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Bubble nucleation in the two-flavor quark-meson model”
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Abstract: We investigate the dynamics of a first-order quark-hadron transition via homogeneous thermal nucle-
ation in the two-flavor quark-meson model. The contribution of the fermionic vacuum loop in the effective thermo-
dynamics potential and phase diagram, together with the location of the critical endpoint (CEP), is obtained in the
temperature and chemical potential plane. For weak and strong first-order phase transitions, by taking the temperat-
ure as a variable, the critical bubble profiles, evolutions of the surface tension, and saddle-point action in the pres-
ence of a nucleation bubble are numerically calculated in detail when fixing the chemical potentials at 4 = 306 MeV
and ¢ =309 MeV. Our results show that the system could be trapped in the metastable state for a long time as long
as the temperature is between the metastable region characterized by the up and low spinodal lines. Moreover, the
surface tension at criticality will rise to approximately 4 MeV/fm? when the chemical potential is very high. Such a
small surface tension value would favor a mixed phase in the cores of compact stars and may have an important im-
plication in astrophysics.
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I. INTRODUCTION

It is widely believed that the hadronic matter charac-
terized by confinement and chiral-symmetry at low net
baryon densities undergoes a phase transition into a de-
confined and chirally symmetric quark-gluon-plasma
(QGP) through a smooth crossover with an increase in
temperature. At high densities, some studies predict a
first-order phase transition line separating the hadronic
matter from the QGP and more possible exotic phases. At
end of this line, a so-called critical endpoint (CEP) should
exist where the transition should of continuous second-or-
der. Investigation and identitifaction of the phase dia-
gram is one of the most challenging problems in high en-
ergy physics and astrophysics [1—3]; this study is experi-
mentally supported by the heavy-ion collision experi-
ments, such as the Relativistic Heavy lon Collider
(RHIC) at Brookhaven National Laboratory and the
Large Hadron Collider (LHC) at CERN. These experi-
ments allow us to inspect and reveal the fundamental
properties of the strong interaction. Moreover, to explore
a wider range of the QCD phase diagram up to several
times the normal nuclear-matter density, the new Facility

for Antiproton and lon Research at Darmstadt, the Nuclo-
tron-based Ion Collider Facility at the Joint Institute for
Nuclear Research in Dubna, and the Japan Proton Accel-
erator Research Complex at Japan Atomic Energy Re-
search Institute and Japan’s National Laboratory for High
Energy Physics have been scheduled and planned, and the
CEP can be explored in phase II of Beam Energy Scan
program at RHIC and in upcoming experiments [4, 5].
From a theoretical point of view, Quantum Chromo-
dynamics (QCD), the gauge theory describing strong in-
teractions in elementary particle physics, is applicable for
determining the properties of strongly interacting matter
at finite temperature and density. However, due to the fer-
mion sign problem, an ab initio approach, Lattice Field
Theory, is severely hampered by the failure of import-
ance sampling if a chemical potential is involved [6]. In
order to describe the low-energy nonperturbative phe-
nomena in the framework of QCD theory, an alternative
approach is adoption of effective models possessing two
salient features of QCD, i.e., chiral symmetry and con-
finement. A few of these effective models, which have
been successfully utilized for many decades, are the
Nambu-Jona-Lasinio (NJL) model [7, 8], the linear sigma
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model (LSM) [9] and their modernized extensions, the
Polyakov Nambu-Jona-Lasinio model (PNJL) [10, 11]
and the Polyakov Quark Meson Model (PQM) [12—14].

Recently, after the discovery of gravitational waves
by LIGO Collaboration [15], the subject of cosmological
first-order phase transition has gathered increasing in-
terest due to the stochastic gravitational wave back-
ground produced [16—18]. The stochastic gravitational
wave background could be detected by current and near
future detectors. Observing this signal would provide us
with the earliest known probe of the universe. Moreover,
aside from the early universe phenomena in primordial
first-order phase transition, the observation of gravitation-
al waves also shed light on the field of astrophysics. Fu-
ture gravitational wave observations related to a first-or-
der quark-hadron phase transition would enable the prob-
ing of the equation of state for matter under extreme cir-
cumstances and cause a constraint on the quark-hadron
surface tension. In combination with other observations,
astrophysics has now entered the multimessenger era
[19-25]. Therefore, understanding the dynamics of the
first-order phase transition is crucial. With upcoming
gravitational waves experiments, explolration of anticip-
ated phenomenology tightly connected with its underly-
ing fundamental mechanism is essential.

It is well known that the dynamics of first-order phase
transition in the early universe and heavy-ion collisions at
ultrarelativistic energies can be applied through the ho-
mogeneous nucleation theory [26, 27]. The modern the-
ory pioneered by Langer in the late 1960s in the context
of classical statistical mechanics [28, 29] has been exten-
ded to relativistic quantum field theory by Callan and
Coleman for zero temperature [30—32] and by Affect [33]
and Linde [34, 35] for finite temperature. The remark-
able goal of a nucleation theory is to calculate the nucle-
ation rate of a bubble or droplet of a stable (true) vacuum
inside a metastable (false) vacuum near the critical tem-
perature. Suppose that a system is near its critical temper-
ature owing to the thermal and quantum fluctuations of
any thermodynamic systems, then bubbles of the stable
vacuum created by fluctuations may grow or shrink in-
side the homogeneous false vacuum depending on its en-
ergy budget with regard to the false vacuum. If a droplet
is too small, the free energy gain from the phase trans-
ition of the bulk is less than the energy cost in creating an
interface between two vacua. The droplet will shrink and
evaporate if the total free energy is positive. On the other
hand, if the droplet is large, a bulk free energy gain is rel-
atively large, and the surface energy cost is negligible, the
droplet will tend to grow and eventually occupy the
whole system, completing the phase conversion.

For a strong first-order phase transition, which is usu-
ally characterized by an effective potential with a zero-
temperature potential barrier, the quark-hadron phase
conversion dynamics based on the Friedberg-Lee (FL)

model [36] have been studied numerically [37], and the
findings have also been compared to the analytic results
obtained with the thin-wall approximation [38]. Since the
FL model lacks chiral symmetry, the model only predicts
a first-order phase transition in the entire QCD phase dia-
gram. This, of course, conflicts with other studies based
on lattice simulations or chiral models, so that the model
can merely serve as the prototypical toy model for cur-
rent interests. To fix this problem, it is necessary to intro-
duce chiral symmetry in the FL model to properly de-
scribe the hadron-quark phase transition beyond the first-
order transition. Then, the quark meson model, treated as
an upgrade to the FL model, seems to fulfill the require-
ments in both the studies of the static nucleon properties
and the QCD phase transition [39, 40]. In the framework
of the quark meson model, homogeneous bubble nucle-
ation has been initially investigated both in numerical and
analytic methods in Ref. [41], but the study was con-
strained at the temperature below the critical temperature,
and an unphysical coupling constant was chosen to en-
hance the strength of the first-order phase transition. Fur-
thermore, with the thin-wall approximation, bubble nuc-
leations at low temperatures, high density, and a strong
magnetic field have been previously investigated in Refs.
[42, 43]. A key ingredient in a first-order phase transition
is the surface tension. By using the analytical method or
thin-wall approximation, surface tensions and phase dia-
grams have been obtained in the quark meson model with
the Polyakov-loop in Refs. [44, 45].

In this work, we carry out a systematic and complete
study on the dynamics of the first-order quark-hadron
phase transition through the exact numerical method
based on the following three important points: The first
and most important point is that the thin-wall approxima-
tion is not applicable when the temperature goes far from
the critical temperature, since the radius of the bounce is
comparable with the thickness of the bubble wall and the
friction force term can not be discarded. The situation
will become worse for a weak first-order phase transition
because the first-order phase conversion will turn from a
homogeneous bubble nucleation to a spinodal decomposi-
tion when the temperature approaches the spinodal line,
and the thin-wall approximation should break down ac-
cordingly. As such, the exact numerical method is crucial
and necessary. In the following discussion, we will com-
pare our results with the recent findings in the quark
meson model within the thin-wall approximation
[42—46]. The second point is that the contribution of the
sea quark in the pressure is usually ignored in previous
studies. However, it plays a significant role in the study
of the hadron quark phase transition because it softens the
first-order phase transition and dramatically reduces the
surface tension of the hadron quark interface [47—49].
Moreover, in the chiral limit, the inclusion of the fermi-
onic vacuum term can influence the order of the chiral
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phase transition in the QM and PQM model and give out
a second-order phase transition, which is in agreement
with the universality argument based on the O(4) sym-
metry [47]. In this work, we will include the fermion va-
cuum fluctuation in the effective potential to present a
more realistic phase diagram and QCD thermodynamics.
Finally, the surface tension of the interface between two
vacua plays a central role in the procedure of a first-order
phase transition, as it is the amount of energy per unit
area required to create the interface between the quark
and hadron phases. Consequently, several recent studies
and efforts have been focused on this problem. However,
the saddle-point action evaluated on the bounce solution
is also important in determining the nucleation rate of the
true vacuum inside the homogeneous false vacuum.
Moreover, a first-order phase transition is not a fast con-
version; it does not happen exactly at the critical temper-
ature. To obtain the specific moment at which the phase
conversion is to be completed, or more specifically, the
phase boundary of the quark phase or the hadron phase,
we need to compute this action precisely, especially when
the temperature is very close to the spinodal temperature.
Therefore, in this work, the saddle-point action will be
calculated by adopting the realistic coupling constant
when the temperature is below the critical coexistence
line and the temperature is above the critical value.

The remainder of the paper is structured as follows: In
the next section, we briefly describe the quark meson
model. After that, we discuss the effective potential at fi-
nite temperatures and densities and present a phase dia-
gram of the QCD phase transition. In Sec. IV, we give a
detailed description of homogeneous nucleation and the
methods used for both numerical and analytic computa-
tions of the critical bubble profiles. Our results and dis-
cussions are presented in Sec. V, while in the last section,
we present our conclusions.

II. THE MODEL

In terms of chiral fields, the Lagrangians of two mass-
less noninteracting quarks « and d are invariant under the
global SU(2), X SU(2)g chiral phase transformations

Yir — WL,R =ULrYrrs ()

u

where g = (d)L,R and U =exp(—i§L,R'§). However,
this chiral symmetry does not appear in the low energy
particle spectrum, and the strong interaction theory exhib-
its the phenomenon of spontaneous symmetry breaking.
Consequently, three Goldstone bosons appear, and the
constituent quarks become massive at low energy. In de-
scribing the symmetries of the Lagrangian, it is useful to
introduce three pion mesons 7 and a 6 meson in terms of
a matrix field as

(=1

.
O=0—+ix-
2

, 2)

N~y

where 7° is the unity matrix and 7 are the three Pauli

matrices. Under the SU(2),xSU(2)r chiral symmetry
transformations, ®@ transforms as

D> O =U,dU;. 3)

Then, the renormalizable effective Lagrangian of the
two-flavors quark meson model is defined as [9, 50]

L=Lo+ L, 4)
where

2

2
Lo = Tr[(8,®)" (8" D)] -1 {Tr(CD*(D) - %} —HTI[®], (5)

and

L, =00 P+ i P — 280, Dy +hec.. (6)

Here, we have introduced a flavor-blind Yukawa coup-
ling g of the left-handed and right-handed quark fields to
interact with the @ field.

The parameters of the Lagrangian £ are chosen un-
der the requirement that the chiral symmetry SU(2).X
SU(2)g is spontaneously broken down to SU(2)..x in the
vacuum, while the o field takes on a non-vanishing vacu-
um expectation value (o) =f, = 93 MeV. This results in a
massive o meson and three massless Goldstone bosons 7
mesons in the chiral limit, as well as giving an effective
mass m, = gf; to the constituent quarks. Furthermore, the
chiral symmetry is explicitly broken by adding the last
term in Eq. (5) due to the finite current quark masses.
With this additional term, the vector isospin SU(2) sym-
metry remains exact but the axial SU(2) transformation is
no longer invariant. Accordingly, the constant H is to be
fixed by the partially conserved axial vector current rela-
tion, which gives H = f,m2, where the pion mass is taken
as m, = 138 MeV. Moreover, the dimensionless coupling
constant g in the model is determined by the constituent
quark mass in vacuum, which is about 1/3 of the nucleon
mass and gives g =~ 3.3. Another dimensionless coupling
constant A is usually fixed by the sigma mass
m% =m2+2Af?. Here, we set it to 500 MeV according to
the most recent compilation of the Particle Data Group
[51]. Finally, the quantity 9 is actually not a free paramet-
er and can be formally expressed as ¥ = f? —m2/A.
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III. EFFECTIVE POTENTIAL AND PHASE
STRUCTURE

A convenient framework for studying phase trans-
itions and the restoration of the chiral symmetry at ex-
tremely high energy is the thermal field theory [18, 52].
Within this framework, the effective potential is one of
the important and powerful theoretical tools, and the
standard approach for dealing with the thermodynamics
of various observables of interest relies on the grand ca-
nonical ensemble. To make things lucid, we start with a
spatially uniform system in thermodynamical equilibri-
um at temperature 7" and quark chemical potential .
From here and henceforward, we will use the chemical
potential to represent the quark chemical potential. In
general, the grand partition function is commonly given
by

z= [[Iooon, [ Duvies | [ crwiro). o

where fx = ff dr [ d3x, the inverse temperature 8=1/T,
and p = /3 for the homogeneous background field.

In the mean-field approximation, the meson fields in
the Lagrangian are replaced by their expectation values,
whereas the quark and antiquark fields are still retained as
quantum fields. This implies that the one-loop correction
to the effective potential from the quark fields is con-
sidered but treats the mesonic degrees of freedom at the
tree level. Following this scheme, the integration over the
fermions yields a determinant that can be calculated us-
ing standard procedures [27, 53], generating an effective
potential for the mesons. Finally, the effective potential
of the model can be obtained exactly in a closed form as

-TInZ

AT, = v

=U(0,7) + Qyy, )

where the classical potential for the o and 7 is rewritten
as

2
Uiy =7 (o7 +7 ~9%) ~ Hor, ©)

and the contribution of quarks and antiquarks are given
by
&dp

— OV h
Q@,/, = Ql/_/l//+er/_/¢ = -V w

&
T / G (I [1+& 0 [0},
(10)

Here, v=2N;N.=12 and E = ,/ﬁ2+m§ is the valence

quark and antiquark energy for u and d quarks, and the
minus sign is the consequence of the Fermi-Dirac statist-
ics. The constituent quark (antiquark) mass is set to
my = go.

The first term of Eq. (10) denotes the fermions vacu-
um one-loop contribution, which is ultraviolet divergent
and can only be evaluated in the presence of a regulator.
The divergence in Eq. (10) can then be appropriately
renormalized using the dimensional regularization
scheme [47, 48, 54]. After considering the vacuum fluctu-
ations and renormalization issues, the renormalized fer-
mion vacuum one-loop contribution reads

v re; N, f 4 my
0}, = Q5 == Lo (K) (11)

where A denotes the arbitrary renormalization scale. Not-
ably, dimensional regularization introduces an arbitrary
renormalization scale parameter. Nevertheless, at least in
the one-loop approximation, the thermodynamic poten-
tial and all physical observables are independent of the
choice of A, and the scale dependence can be neatly can-
celed out after the rearrangement of parameters in the
model [40, 47, 48, 55].

Equipped with the above effective potential, we can
explore the phase diagram of the model at finite temperat-
ure and density by minimizing the thermodynamical po-
tential in equation (8) with respect to the order parameter
0. Then, an equation of motion is given by

0T _, (12)
oo

The solution of the equation of motion determines the
behavior of the chiral order parameters ¢ as a function of
T and u, as well as the phase diagram of the model. As we
know, the thermodynamic state of equilibrium is determ-
ined by the values of the order parameter at the global
minimum of the effective potential. Once the order para-
meter for each given T and y is obtained, any thermody-
namical quantity of equilibrium, such as the pressure, the
entropy density, the energy density, the speed of sound, et
al., can be described and calculated.

In Fig. 1, we have presented the phase diagram in cal-
culation with the fermion vacuum fluctuation for the two-
flavor quark meson model. The temperature behavior of
the chiral condensate o shows that the system experi-
ences a smooth crossover transition at low chemical po-
tential, while there is a first-order phase transition for lar-
ger chemical potential because the chiral order parameter
makes a jump across the gap of the condensate near the
critical temperature T,.. Normally, the temperature deriv-
ative of the chiral condensate ¢ for quarks has a peak at
some specific temperature, which is established as the
critical temperature for the chiral phase transition. Be-

053105-4



Bubble nucleation in the two-flavor quark-meson model

Chin. Phys. C 48, 053105 (2024)

50
S - - - crossover
40 T —— First order ]
N --—-- Low spinodal line
s ------ Up spinodal line
~30+ ]
>
[
=3
F2o0t A
10 1
.l
1 L Y

ggo 295 300 305 310 315 320
u(MeV)

Fig. 1.

for the two-flavor quark meson model. The dashed lines are

(color online) The phase diagram in the T —u plane

the critical line for conventional chiral phase transition in the
crossover region. The solid line indicates the first-order phase
transitions, and the solid circle indicates the critical end points
for chiral phase transitions of u and d quarks. The dashed-dot-
ted line and the dashed-doted-dotted line are the lower and up-
per spinodal lines.

cause the temperature derivative of the chiral condensate
has simply one peak, we can not tell when and where the
crossover phase transition would convert to a first-order
one at the critical endpoint (CEP) with a second order
phase transition [46, 50]. In order to locate the CEP in the
phase diagram, the quark number susceptibility x, =
0*Q(T,u)/8u is to be introduced, and it is believed to be
divergent at the CEP [4, 5].

Aside from calculation of the quark number suscept-
ibility x,, in the present work, we prefer to use the shapes
of the effective potential at various temperatures and
chemical potentials to decide the position of the CEP. In
the case of the first-order phase transition, along the crit-
ical line with the temperature 7' =~ T, the thermodynamic-
al potential Q(7,u) has two minima of equal depth separ-
ated by a potential barrier. With the reduction of the
chemical potential, the height of the barrier decreases and
finally disappears at the CEP, where the phase transition
is of the second order. In our calculation, the correspond-
ing CEP is located at (Tg,ug) ~(30,301) MeV in Fig. 1.
Notably, the location of the CEP from the theory calcula-
tions is scattered over the region of up =200—-1100 MeV
and 7 =40-180 MeV [4, 5]. QCD-based model calcula-
tions like the NJL model [56, 57], QM model [58, 59],
PNIJ [10], and PQM [12—-14] produce a relative larger
critical chemical potential around u = /3 =300 MeV.
However, the functional renormalization group (FRG) ap-
proach and Dyson-Schwinger equations predict a rather
narrow region for the critical chemical potential around
1 =200-220 MeV [60—63]. However, the accuracy of
predictions for CEP from the first principle lattice-QCD
calculations worsens toward a very large chemical poten-
tial; various model calculations vary wildly in their pre-
dictions. Therefore, an experimental search of the critical

point is crucial and important to establish its position in
the phase diagram.

As shown in Fig. 2, in the region of the first-order
phase transition, a typical effective potential commonly
displays a local minimum at a low sigma o, which is
separated by a potential barrier from another local minim-
um at a relative larger sigma o,. When a critical temper-
ature T, is reached, these two minima degenerate. For
T < T., the minimum of the effective potential at o = o,
is the absolute or global minimum, which is regarded as
the stable (true) vacuum, whereas the minimum at o = o;
is treated as the metastable (false) vacuum. In this case,
the chiral symmetry is broken so that the constituent
quarks become massive. On the contrary, when the tem-
perature T goes across above the critical value 7., these
two vacua flip over, the global minimum is at o = o, and
the local minimum is at o =oy. Since the chiral sym-
metry is approximately restored and the quarks become
almost massless, the system for 7' > 7. is then considered
as the quark phase. The previous case for T < T, is taken
as the hadron phase, therefore the critical lines divide the
whole phase diagram into two categories: the hadron and
quark phases.

Normally, apart from the critical temperature T,
there are two other temperatures of interests in a first-or-
der phase transitions. These two temperatures 7.; and T,
are named the lower and upper spinodal critical points,
respectively. A typical example is shown in Fig. 2, where
the evolutions of the potential for several temperatures
when a chemical potential fixed at p =306 MeV and
1 =309 MeV are exhibited. For the left panel in Fig. 2 at
1 =306 MeV, when the temperature is around 7, =~ 20.6
MeV, the shape of the potential exhibits two degenerate
minima. However, as the temperature increases, the
second minimum of the potential at o = o, disappears at
a higher temperature 7., ~23.1 MeV. Meanwhile, when
the temperature falls below the critical temperature T,
the first minimum of the potential at o = o, tends to wipe
out around T, ~14.7 MeV. Between these two specific
temperatures, metastable states or a false vacuum exists,
and the system can exhibit supercooling or superheating.

For 1 =309 MeV, one can also observe the character-
istic pattern of a first order phase transition: two minima
corresponding to phases of restored and broken chiral
symmetry are separated by a potential barrier and they
become degenerate when the temperature is at 7. ~ 13.3
MeV. Chiral symmetry is approximately restored for
T > T., where the minimum at false vacuum o = o be-
comes the absolute minimum, as shown in the right panel
in Fig. 2. Similar to the previous case for u =306 MeV,
when the temperature 7" goes up the critical line and rises
further, the potential barrier between two minima de-
creases gradually and shrinks to zero at the moment when
the second minimum of the potential at o = o7, vanishes
at a spinodal temperature 7., ~18.8 MeV. On the other
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(color online) (a) The grand canonical potentials Q as a function of the chiral order parameter o for =306 MeV at various

temperatures. (b) The grand canonical potentials Q as a function of the chiral order parameter ¢ for u =309 MeV at various temperat-

ures.

hand, when T < T, the shapes of the effective potential at
various low temperatures display quite different behavi-
ors in comparison with those of the previous case at
1 =306 MeV. The barrier between two minima of the ef-
fective potential is to maintain even when the temperat-
ure 7 is very close to zero. This means that the first min-
imum of the effective potential at o =0, could always
exist in the hadron phase. Therefore, the phase transition
could be identified as a strongly first-order phase trans-
ition, which is usually induced by an effective potential
with a nonvanishing zero-temperature potential barrier.

To provide a complete description of a first-order
phase transition, two particular lines of the spinodal
points that constrain the regions of spinodal instability for
the first-order phase transition at high density are illus-
trated in Fig. 1. Similar to the critical line in Fig. 1, both
the lower and upper spinodal lines increase as the chem-
ical potential x4 reduces. However, the gap between these
two spinodal lines becomes increasingly smaller. In the
end, the two spinodal lines and the critical line terminate
at the same point in the CEP. Moreover, since the lower
spinodal line will end up at some point y. =~ 308 MeV on
the vertical axis of the chemical potential, the area of the
first-order phase transition can be technically split into a
weakly first-order phase transition and a strongly first-or-
der phase transition according to the above discussion.

Therefore, for a weak first-order chiral phase trans-
ition where the chemical potential is u <y, at T < T, the
thermodynamic potential exhibits a local minimum aside
from the global minimum, when the temperature de-
creases from 7. to a specific value T,;. The local minim-
um gradually disappears at the point of inflection known
as spinodal instability. Whereas, for u> pu., the chiral
phase transition is to be considered as a strongly first-or-
der one due to the fact that the local minimum remains
for the temperature at 7 <T. and there is no spinodal
temperature. The critical chemical potential for a trans-
ition from a weak first-order phase transition to that of a
strong one is then identified as the critical chemical po-
tential at u. ~ 308 MeV in hadron phase [37, 64].

IV. HOMOGENEOUS THERMAL NUCLEATION

The mechanism of the nucleation theory can be used
to study the probability that a bubble or droplet of the
stable vacuum in a system initially trapped in the meta-
stable vacuum near the critical temperature 7.. For a pure
system, the formation of bubbles originates from intrins-
ic thermodynamic fluctuations; this kind of nucleation
mechanism is commonly called homogeneous nucleation.
On the contrary, when impurities cause the formation of
bubbles or droplets, such a mechanism of the nucleation
theory is known as heterogeneous nucleation. In the
everyday world, the external agents would play the role
of nucleating centers, such as dust or ions in the atmo-
sphere, leading to a much more efficient increase in the
nucleation rate. Nevertheless, for the physical interests re-
lated to our study, homogeneous nucleation theory is ap-
propriate, and we will use this basic theoretical apparatus
to describe the decay of the metastable vacuum of a sys-
tem interacting with a heat bath at temperature 7.

Based on the framework of the homogeneous thermal
nucleation, we make an assumption in the limit that
thermal fluctuations dominate quantum fluctuations, and
the quantum-induced tunneling is simply ignored. Then,
the nucleation rate per unit time per unit volume is given
in the form of

I'=Pexp [—%} , (13)

where 7 is the temperature of the system in equilibrium
with the thermal bath, S is the three-dimensional action
associated with the O(3)-symmetric critical bubble or
droplet and % is the exponential prefactor. For the mech-
anism of the bubble nucleation to the leading order, the
nucleation rate is controlled by the exponent of the three-
dimensional action evaluated on the critical bubble. The
sub-leading corrections to the leading-order bubble ac-
tion are included in the prefactor £, which can be tech-
nically expressed as
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1/2

P:ﬁ(‘93 (14)

)3/2 {Det(—Vz +Q)
2n \2xT

Det' (-V2+ Q)

Here, w_ is the eigenvalue of the negative mode, the
terms QF, and Q} are abbreviations for Q" evaluated in
the false vacuum and the critical bubble, the prime in the
determinant signifies that the zero eigenvalues associated
with the translation symmetry of the bubble are omitted.
Q" is the second derivative of the effective potential
Q(T, ) with respect to the order parameter ¢ which is ac-
tually represented a field in describing the extremum of
the three-dimensional Euclidean action, more specific-
ally, the critical bubble or the bounce. Usually, the calcu-
lation and evaluation of this prefactor is a nontrivial mat-
ter, a rough estimate of their ratios can be obtained by di-
mensional analysis and it can be approximately ex-
pressed as T* or T? for simplicity [26, 41].

The result represented in the above equation (13) is a
semi-classical contribution based on a saddle point ap-
proximation around the bounce solution. By taking the
scalar field o as the order parameter, at finite-temperat-
ure field theory, an Euclidean action we are interested in
is

A 1/80\> 1
S,;((r)z/0 d‘r/d3r {2 (a—(;) +§(V0')2+Q(0';T,/,t) ,
(15)

in which the subscript £ denotes Euclidean and the integ-
ral is over Euclidean space. For the sake of convenience,
in the following discussions, we will keep the ¢ field in
the effective potential Q in Eq. (8) explicitly. As argued
by Linde [35], for sufficiently high temperatures at large
length scales compared to S, the relevant number of di-
mensions is d = 3, and the Euclidean action becomes

S
Sp(o) = 73, (16)

where S; is the three-dimensional saddle-point action as-
sociated with the formation of a critical-sized bubble or
droplet; in what follows, it is to be called as the saddle-
point action for abbreviation. Therefore, the bounce is an
O(3) symmetric solution to the classical equation of mo-
tion that extremizes the Euclidean action S;. In particu-
lar, for a scalar field o, the bounce satisfies a nonlinear
ordinary differential equation,

d’o(r) . % do(r) Qo T,u)

1
dr? r dr oo (7

do(r)

dr r=0 -
0. The first boundary condition is, because the bubbles

with boundary conditions limo(r) = ory and

are embedded in the homogeneous false vacuum outside
the bubble, the o field should arrive at its false vacuum at
o =~ ory. The second one is set according to the require-
ment of finite energy at the origin. The solution for this
equation of motion with the above proper boundary con-
ditions is a saddle point solution or a bounce . It is an
0(3) non-trivial field configuration that starts in the false
vacuum and reaches the other side of the potential barrier
with zero velocity. In this work, we will use the Any-
Bubble package [65] to determine the bounce.

Once the solution o, is obtained, the S; exponent in
Eq. (13) can be evaluated on the bounce solution o, as

S3=/d3r B(V(T)2+Q(0;T,#) , (18)

and the surface tension of the nucleation bubble interface
between the false vacuum and the true vacuum is defined
accordingly as [35, 66]

Z—/d l(d—0>2+9 :T
PR @ T.p)

Notably, in practical calculations, if the false vacuum
has a non-zero potential energy, an additional term
—Q(ory; T, 1) should be included in the S5 action and the
surface tension .

For a generic effective potential, the equation of mo-
tion of the bounce with boundary conditions usually can-
not be obtained analytically. We should rely on numeric-
al methods to perform the computation. However, when
the system is very close to the critical coexistence line,
the bubble radius R is much larger than the wall thick-
ness (AR ~ m;"). Hence, when the damping force 207 /r in
the field equation becomes negligible, the thin-wall ap-
proximation is applicable and the equation of motion (17)
reduces to the field equation for a typical one-dimension-
al soliton

. (19)

do(r) dQ
=—. 20
dr? do (20)
This static field equation implies that
o) _ , vaq. 1)
dr
Integrating Eq. (21) yields
7" do
r — 22
o V2Q @)

Therefore, an approximate solution for the bounce can be
obtained for arbitrary potential with two or more degener-
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ate minima. Moreover, within the thin-wall approxima-
tion, the surface tension of the bubble can be calculated

as
) 1 d 2 TFy
zlwz/ dr { (ﬁ) +Q} =/ drV2Q,  (23)
0 2 \dr or

and the saddle-point action S5 is given by

_lenE,

= . 24
Sy= ot 24)

The quantity &= Q(or;T,0)—QUor;T,u) is the differ-
ence between the values of the effective potential at the
false vacuum and true vacuum.

V. RESULTS AND DISCUSSION

In this section, we will numerically solve the equa-
tion of motion in Eq.(17) with some boundary conditions,
o—opy as r— oo and ¢’(0)=0. Since a first-order
phase transition necessitates a discontinuity in the scalar
field o, the transition does not exactly take place at the
critical temperature T, along the critical coexistence line
in the phase diagram in Fig. 1. Consequently, the false
vacuum oy should be addressed properly before we ob-
tain the exact numerical solutions of the equation of mo-
tion.

In order to get an intuitional description of the false
vacuum decay at finite temperature and density, the dy-
namics of a first-order phase transition at metastability
should be classified into two categories: top-down and
bottom-up. More specifically, by "top-down,” we mean
that we will study the false vacuum decay at finite tem-
perature and density for the temperature T < 7,. The ini-
tial false vacuum of the system is well prepared as the
quark phase at o = o for T = T, when the system is cool-
ing down from a very high temperature. On the other
side, by “bottom-up,” we mean that the original false va-
cuum for the temperature 7 =~ T, is defined as the hadron
phase at o = 0,. We study the decay of the hadron phase
for the temperature 7 > T. in the event that the system is
heating up from the low energy state.

A. Top-down

As the system cools down from a very high temperat-
ure. When T =~ T,, the initial false vacuum can be caus-
ally set as the quark phase, since the first-order transition
does not happen exactly at 7., but upon lowering the tem-
perature. The appearance of a bubble of the hadron phase
(the stable state) inside the quark phase (the metastable
state) is a natural consequence of the thermal fluctuations
of the thermodynamical system sufficiently close to the
coexistence line in the phase diagram. To study the dy-

namics of a first-order phase transition in this "top-down"
scenario as T < T., we numerically solve the equation of
motion in Eq. (17) with the specific boundary conditions
as o — oy, r — oo, and do(0)/dr = 0. Here, the false vacu-
um o is temperature-dependent, as the local minimum of
the effective potential varies with increasing of the tem-
perature when fixing the chemical potential.

For =306 MeV, the exact numerical solutions by
taking the temperatures as 7 = 15, 16, 17, 18, 19, and 20
MeV are plotted in the left panel of Fig. 3. It is shown
that as the temperature decreases from 7. ~20.6 MeV, all
curves approach their false vacuum o, when the radius »
is large, whereas o(r) at the center of the bubble deviates
significantly from its stable vacuum value at o =oy.
When the temperature is sufficiently close to the critical
temperature, the o field at the center of the bubble only
slightly deviates from its stable vacuum value at o = .
However, as soon as T < T, MeV, the o(0) field is vis-
ibly different from its stable vacuum value. Such a devi-
ation can be qualitatively explained via an "overshoot-un-
dershoot" argument due to Coleman [30]. According to
this argument, the equation of motion (17) is reinter-
preted as the equation of a particle moving in an "upside-
down" potential energy Q; the second term in the field
equation is taken as the damping force. When the system
is very close to the critical coexistence line, the bubble ra-
dius R is much larger. Therefore, the damping force can
be neglected, and the field o begins to roll down at the top
of the effective potential Q around o ~ o, to rest at its
false vacuum o,. However, when the temperature de-
clines, the radius of the bubble decreases accordingly.
Consequently, the damping force in the field equation be-
comes important, and the field o-(0) deviates from its true
vacuum value more and more dramatically. In other
words, the thin-wall approximation mentioned above is
expected to be invalid, and any further extension of the
thin-wall approximation to the temperature deviations
from T, should be checked very carefully.

A similar discussion can be applied to the second case
when the chemical potential is fixed at g =309 MeV. The
critical bubble profiles at different temperatures are illus-
trated in the right panel of Fig. 3, where the temperatures
are taken as T =1, 4, 6, 8, 10, and 12 MeV from left to
right. The evolution of o(r) for different temperatures in-
dicates that the typical radius of the critical bubble should
increase as the temperature increases, and o(r) ap-
proaches its false vacuum value at o = 0 as r — oo. Also,
from this figure, as long as the temperature is lower than
the critical temperature 7., o(0) will deviate signific-
antly from its stable vacuum value at o = o,. This non-
trivial behavior of the o-(#) in the center of the bubble can
also be interpreted as a limit to the applicability of the
thin-wall approximation.

Once the bubble profiles have been solved from the
definition in Eq. (19), the surface tension of the nucle-
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(color online) (a) Critical bubble profiles for different temperatures when fixing the chemical potential at x =306 MeV for

T < T.. From left to right, the curves correspond to 7 =15, 16, 17, 18, 19, and 20 MeV. (b) Critical bubble profiles for different temper-
atures when fixing the chemical potential at u =309 MeV for T < T.. From left to right, the curves correspond to T =1, 4, 6, 8, 10, and

12 MeV.

ation bubble interface between the false vacuum and the
stable vacuum as a function of the temperature can be ob-
tained, and the results are shown in Fig. 4 when the
chemical potentials are taken as u =306 MeV and
1 =309 MeV. For both cases, as the temperature in-
creases, the surface tension X(7') begins to grow first and
reaches a maximum at a certain temperature. It then in-
flects and slopes downwards. These nontrivial behaviors
of X(T) were also reported in a weak first-order phase
transition [64] and a strong first-order phase transition
[37] using the exact numerical method. However, these
nontrivial properties seemed to be completely destroyed
by the thin-wall approximation. As shown in the left pan-
el of Fig. 2, for a weak first-order phase transition, a
spinodal temperature 7., exists, where a small barrier
between the two minima in the potential disappears. Con-
sequently, there is no bubble solution anymore when
T < T., and the surface tension decreases rapidly to zero
when T — T,,. In contrast, for a strong first-order phase
transition, according to a standard criterion to guarantee
the existence of the stable bounce or soliton, it is indis-
pensable for the potential of the order parameter o field to
exhibit three distinct extrema. Hence, we can have a non-
trivial solution to the equation of motion (17) for any
temperature when 7 < T.. The surface tension will then
decline to a nonzero value as the temperature decreases,
as depicted on the right panel of Fig. 4. This is the main
difference between a strong first-order phase transition
and a weak one, and this is why we have separated the
area of the first-order phase transition in the phase dia-
gram into two categories: a strong one and a weak one in
the previous discussion.

We are now to determine the S;/7 exponent in Eq.
(13), which is the saddle-point action evaluated on the
bounce solution. Because the decay rate per unit volume
is what we are interested in, the argument of the exponen-
tial S3/7 is more important in comparison with the pre-
factor I" if the S5/T is larger than unity 1. As shown in
the following discussions, for most studies considered in

the present work, an estimate for the prefactor based on
dimensional analysis is sufficient. To show the saddle-
point action due to the appearance of the critical bubble
and its crucial role played in the nucleation rate for the
first-order phase transition, the S5/T exponent as a func-
tion of the temperature T at different chemical potentials
is plotted in Fig. 5. As shown in the left panel in Fig. 5,
for a weak first-order phase transition at u =306 MeV,
S3/T will start from zero when the temperature is at the
spinodal temperature 7., because the barrier disappears
and there is only a trivial solution for the field equation of
the o field. It then climbs very quickly as the temperature
increases and tend to diverge near the critical temperat-
ure 7.. Based on the exponential form of equation (13), I'
will be strongly suppressed by the saddle-point action and
the system is likely to stay in the metastable vacuum for a
relatively long time as long as S3/T > 1. Therefore, for a
weak first-order phase transition, the system can be
trapped in the quark phase even when the temperature is
below the critical temperature 7., until the temperature is
such that S3/T =~ 1. After that, the exponential factor is
unimportant and the probability of a false vacuum decay
through the barrier is essentially enhanced by the thermo-
dynamical fluctuation. From the left panel in Fig. 5, for
1 =306 MeV, the remarkable temperature is about 7 ~ 16
MeV. When S3/T ~ 1, it is very close to the spinodal crit-
ical temperature 7., =~ 14.7 MeV. This indicates that the
quark phase could survive safely up to the temperature
near the low spinodal temperature 7., for a weak first-or-
der phase transition.

When fixing the chemical potential at 309 MeV, the
resulting plots of the S;/T exponent as a function of the
temperature 7" are shown in the right panel in Fig. 5. In
this case, the S3/T first decreases as the temperature in-
creases, then it reaches a minimum point and restarts to
grow very quickly. As the temperature nears the critical
temperature 7., it becomes divergent. In comparison with
the former case of a weak first-order phase transition, for
a strong one, the saddle-point action as a function of tem-
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of temperature 7 for T < T, at u =309 MeV.

perature T usually exhibits a non-monotonic behavior as
the temperature increases. This can be taken as one of the
salient properties of the strong first-order phase trans-
ition [37]. Besides the non-trivial property of the saddle-
point action, there is another obvious difference from that
of the first-order phase transitions. For 7' < T, the S3/T
is always larger than the unity 1 regardless of the temper-
ature taken. Such that, for a strong first-order phase trans-
ition in the present model, it seems the conversion of the
quark phase to the hadron phase is exponentially sup-
pressed for T < T, and p > p. with p. ~ 308 MeV, and the
system is likely to stay in the quark phase rather than the
hadron phase. This could, in turn, induce various exotic
structures of the phase of the strong-interaction matter in
high density and low temperature due to the presence of
the free quarks.

B. Bottom-up

By "bottom-up", we mean that the system is heating
up from low energy to very high energy and the starting
point is set as the hadron phase when T ~T.. As the tem-
perature increases further, while T > T,, the appearance
of a bubble of the quark phase (the stable vacuum) inside
the hadron phase (the false vacuum) is also treated as a
natural consequence of the thermal fluctuations of the
thermodynamical system sufficiently near the coexist-
ence line in the phase diagram. Therefore in the "bottom-
up" scenario when 7 > T,, we should numerically solve
the equation of motion in Eq. (17) with the specific

29+ — u=309 MeV 4

0 2 4 6 8 10 12 14
T(MeV)

(a) Surface tension as a function of temperature 7 for 7 < T, at u =306 MeV. (b) Surface tension as a function of temperature
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50
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(a) The saddle-point action as a function of temperature T for 7 < T, at 4 =306 MeV. (b) The saddle-point action as a function

boundary conditions as o — o, r — co, and do(0)/dr =0
because the false vacuum is located at the hadron phase
and the quark phase is now in the stable state.

In what follows, we begin by showing the critical
bubble profiles obtained from the exact numerical solu-
tion of Eq. (17) with the boundary conditions o(c0) = o7,
and o’(0) = 0 when fixing chemical potentials at u = 306
MeV and p =309 MeV in Fig. 6. This is unlike the res-
ults presented in the "top-down" scenario when 7' < T, in
which there are two different first-order phase transitions.
However, for T > T, the results for both panels in Fig. 6
exhibit some similar features. For both cases, as the tem-
perature increases from the critical temperature to the up
spinodal line at T =T, the typical size of the bubble,
which can be approximately estimated using the maxim-
al value of the quantity |o”'(7)|, decreases rapidly to zero
because the barrier between the two minima in the poten-
tial disappears and there is no more stable bubble solu-
tion at T > T,,. Furthermore, the structures of the critical
bubbles also share similar properties. When the temperat-
ure is close to the critical temperature 7., the critical
bubble has an obvious "core" structure with o =~ o separ-
ated by a relatively thin wall from the region o =~ ¢,. On
the other side, when the temperature reaches another crit-
ical point at T =~ T',, the critical bubble usually becomes a
"coreless" structure because the thickness of the critical
bubble has the same order as the radius and the field at
the original point o(r = 0) departs from its true vacuum
o, largely. Finally, the curves in Fig. 6 can be explained
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qualitatively according to the "overshoot-undershoot" ar-
gument given by Coleman. When the temperature is very
close to the critical temperature 7., the potential has two
degenerate vacua, and the damping force is neglectfully
small. The field at the escape point o(r = 0) starts at the
top of the effective potential around o =~ 0. In contrast,
as the temperature increases, the two degenerate vacua
get decoupled, and the damping force takes effect, the
field o(r = 0) will deviate from its vacuum value dramat-
ically, especially as T — T,. In other words, the thin-wall
approximation is not expected to be valid. Any further
extension of the thin-wall approximation to higher tem-
peratures should be checked very carefully, particularly
when the temperature is close to the up spinodal line.
From the definition of the surface tension in Eq. (19),
we plot the temperature dependence of the surface ten-
sions for 7 >7, when fixing the chemical potential at
1 =306 MeV and p =309 MeV in Fig. 7. For u =306
MeV, the values of the surface tension are between ap-
proximately 1.6 MeV and 0 MeV, while for a relatively
larger chemical potential u =309 MeV, they are between
~ 2.8 MeV to zero. Therefore, we can find that the largest
values of the surface tension occur near the critical line
since this domain is characterized by large barriers and a
small energy difference between the true and false vacua.

0.45
0.40 | T
0.35 |
Eosof —— T=20.7 MeV
© ; - --T=21 MeV
025 T=22 MeV| |
--—-T=23 MeV

015 1 1 1 1 1 1
0 20 40 60 80 100 120 140

r (fm)
Fig. 6.

Besides, the result in Fig. 7 also implies that the surface
tension near the critical line at 7 =~ T, increases as chem-
ical potential increases. Moreover, for both cases, the sur-
face tensions will continuously decline to zero as long as
the temperature approaches the up spinodal line at
T ~T,,. Therefore, in the bottom-up scenario, X(T) is a
monotonically decreasing function of 7, whereas in the
top-down scenario it is a non-monotonic function and has
a nontrivial behavior. Sometimes, the nontrivial evolu-
tion of X(T') suggests that the temperature dependent sur-
face tension has a maximum value at a specific temperat-
ure, and it can be taken as a limit to the applicability of
the thin-wall approximation [37, 64]. Thus, for the bot-
tom-up scenario, we need to develop an alternative meth-
od to estimate the scope in which the thin-wall approxim-
ation is valid.

To study the dynamics of a first-order phase trans-
ition, the last important quantity to be evaluated is the
saddle-point action S;/7T due to the activation of a nucle-
ation bubble, which is an essential ingredient for the nuc-
leation rate per unit time per unit volume in Eq. (13). In
Fig. 8, S3/T is plotted as a function of temperature T for
T >T, when fixing the chemical potentials at u =306
MeV and p =309 MeV. From this figure, as the temperat-
ure approaches the critical temperature 7., S3/T in-
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777777777777777777777777
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(color online) (a) Critical bubble profiles for different temperatures when fixing the chemical potential at x =306 MeV for

T > T.. From right to left, the curves correspond to T =20.7, 21, 22, and 23 MeV. (b) Critical bubble profiles for different temperatures
when fixing the chemical potential at x = 309 MeV for T > T... From right to left, the curves correspond to T = 14, 15, 16, and 17 MeV.
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(a) Surface tension as a function of temperature T for T > T, at u =306 MeV. (b) Surface tension as a function of temperature
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of temperature 7 for T > T, at u =309 MeV.

creases very quickly and diverges near the critical tem-
perature 7.. In the opposite direction, when the temperat-
ure is close to the spinodal critical temperature T, S3/T
decreases rapidly to zero, during this procedure, what we
are interested in is the moment when S;/T is approxim-
ately 1, because if S;3/T > 1, the nucleation rate I will be
strongly suppressed by the exponential factor and the sys-
tem is likely to stay in the false vacuum for a very long
time. From the left panel of Fig. 8, for u =306 MeV,
when the temperature is about 22.8 MeV, S;/T ~1, so
that the system is likely to remain in the hadron phase un-
til the temperature is less than 22.8 MeV. For u =309
MeV, this specific temperature is approximately 18.4
MeV when S;/T ~1. This indicates that hadron phase
could also maintain its existence as long as the temperat-
ure is below 18.4 MeV. Since these two specific temper-
atures are very close to their spinodal critical temperat-
ures T,», we can obtain a rough estimate by simply tak-
ing the spinodal critical line in phase diagram as a phase
boundary for the stable existence of the false vacuum in
the first-order phase transition.

VI. CONCLUSION

In this work, we have computed the effective poten-
tial for a two-flavor quark-meson model at finite temper-
ature and density in the presence of a fermionic vacuum
term. Having obtained the in-medium effective potential,
the phase diagram and critical end point have been
provided, and the up and low spinodal lines have been
calculated explicitly for the first-order hadron quark
phase transition. For the low spinodal line, the first-order
phase transition can be further divided into strong and
weak ones in the phase diagram when the temperature is
below the critical coexistence line. The critical chemical
potential is taken as u =308 MeV, as the low spinodal
line terminates at this point. Therefore, when T < T,, for
1 <308 MeV, it is a weak first-order phase transition, but
for ;1 >308 MeV, it belongs to a strong first-order phase
transition.
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(a) The saddle-point action as a function of temperature 7 for T > T. at u =306 MeV. (b) The saddle-point action as a function

Given the temperature-dependent effective potential,
the problem of homogeneous nucleation of the bubbles in
a first-order phase transition can be investigated accord-
ingly. For convenience, we have separated our discus-
sions into two scenarios: the top-down case and the bot-
tom-up case. By "top-down,” we consider the quark
phase as a metastable (false) vacuum and the hadron
phase as a stable (true) vacuum when 7' < T.. On the con-
trary, by "bottom -up," we mean that the false vacuum is
the hadron phase whereas the true vacuum is the quark
phase as T > T.. Then. for the former case, the boundary
condition at infinite radius is o = o7,, whereas it is o= oy
for the latter case. With these specific boundary condi-
tions, a saddle point solution of the field equation has
been solved and the exact bubble profiles were obtained.
Usually, when the temperature is close to the critical tem-
perature 7., the bubble profile shows a "core" structure
with the sigma field at true vacuum o =~ or separated by
a relatively thin wall from the false vacuum at o ~opy.
However, when the temperature approaches the spinodal
critical temperature, the bubble profile exhibits a coreless
structure, as the thickness of the critical bubble has the
order of the radius and the ¢ field inside the bubble signi-
ficantly deviates from its true vacuum value.

The calculation for the surface tension between a
quark phase and a hadron phase was also presented in
these two different scenarios. In the "top-down" context,
the surface tension first increases to a maximum value
and then decreases as the temperature increases. The top
of the surface tension could be taken as a limit on the reli-
ability of the thin-wall approximation because the bubble
profile at this point indicates the largest distortion of that
of the thin-wall approximation. On the other side, for the
"bottom-up" context, the surface tension demonstrates a
monotonic property as the temperature increases; it de-
clines continually from its top value at the critical temper-
ature T. to zero as T — T,,. As we know, surface tension
plays an important role in the fields of nuclear physics
and astrophysics and has attracted much attention re-
cently. To provide a comprehensive consultation of the
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relevant research, the surface tension along the critical
coexistence line has been laid out in Fig. 9. We believe
the remaining value of the surface tension in the domain
of the first-order phase transition can be easily extracted
and estimated using the method in this work. Con-
sequently, the present model predicts a surface tension of
X ~0-4 MeV/fm*. Our results are very similar to the
ones recently found for the same model in the thin-wall
approximation in Ref. [46], since the thin-wall approxim-
ation is a reliable tool at T ~ T.. Note that most effective
models also predict small values as T <30 MeV/fm?,
such as the MIT bag model [67], NJL model [68, 69],
three-flavor PQM model [44], the chiral nucleon-meson
model [70], and the Friedberg-Lee model [37]. Such a
small value of the surface tension would lead to quark-
matter formation during core-collapse supernova explo-
sions and favor a mixed phase in the cores of compact
stars, so that this reasonably small surface tension could
provide an observable signal of the first-order phase
transition within compact stars and play an important role
in astrophysics.

Notably, most studies on the subject of surface ten-
sion are based on the quark model. Such as the MIT mod-
el, the NJL model, the QM model, or their modernized
versions, the PNJL and PQM models. Taking the QM
model as a typical example, since it only has the degree
of freedom of the quarks, although the model can be suc-
cessfully used to study the quark phase, it cannot be used
to describe the properties of nuclear matter directly. Of
course, based on the picture of the non-topological
soliton, we can, in principle, reconstruct and get the cor-
rect degree of freedom of the nucleons in the hadron
phase, as done in Refs. [39, 40]. However, such a consid-
eration will lose the knowledge of the entire potential,
which is a necessary condition to find the bounce solu-
tion during the hadron quark phase transition. To com-
pensate for this problem, it is indispensable to study the
first-order phase transition based on other effective mod-
els, as it can give a successful description of the proper-
ties of nuclear matter at saturation density, the nuclear li-
quid-gas phase transition, or even in the region of the
hadron quark phase transition. Fortunately, the chiral nuc-
leon-meson model [71, 72] fulfils the condition and the
surface tension has been calculated and obtained in Ref.
[70]. From this work, a small value of the surface tension
is also reported and the results obtained are similar to our
results when T — T.. Furthermore, besides the hadron
quark phase transition, the first-order nuclear liquid-gas
phase transition and the surface tension have also been in-
vestigated in Ref. [70]. Therefore, by combining their res-
ults with our present study, we can provide a compre-
hensive picture of the hadron quark phase transition from
the vacuum to the quark phase.

For a weak first-order phase transition, our results
show a rapid decrease in temperature in the saddle-point
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Fig. 9. (color online) Surface tension as a function of a

quark chemical potential when T =~ T.. The solid line is for the

"top-down" scenario and the dashed line is for the "bottom-

up" scenario.

action of critical bubbles from infinity at the critical tem-
perature to zero at the spinodal critical temperature. This
implies that we can always determine when S;/7 ~ 1 for
the weak first-order phase transition. However, for a
strong first-order phase transition, the saddle-point action
of critical bubbles shows some different characteriza-
tions. When the temperature increases, it first decreases
to a minimum value, then it rises up and diverges as the
temperature approaches the critical temperature 7.. This
non-monotonic behavior of the S3/7 as the temperature
increases is also reported in a previous study based on the
Friedberg-Lee model [37]. Thus, it can be taken as a sali-
ent feature of a strong first-order phase transition in com-
parison with the weak ones. Another interesting charac-
ter of the S;/T is that the saddle-point action never gets
the chance to reach unity 1 for a strong first-order phase
transition. The result can be roughly interpreted with the
former study in Fig. 6 in Ref. [37], where the evolution of
the S3/T as a function of the chemical potential shows
that for a fixed temperature the saddle-point action will
increase and reach unity 1 quickly when the chemical po-
tential increases to ~ 231 MeV. Hence, the S3/T is be-
lieved to satisfy the condition S3/7 >1 in the present
study since we have a lower temperature and a larger
chemical potential. Given the exponential dependence of
I on §3/T, the decay of the false vacuum is to be expo-
nentially suppressed and the system is likely to stay in the
metastable state for a relatively long time when S3/7 > 1.
Therefore, the false vacuum could survive and exist as a
metastable state as long as the temperature lies between
the up and low spinodal lines. Only if the temperature is
close to the spinodal critical line, will the S3/7 decline to
reach unity 1. More specifically, a "conventional" had-
ron matter among the critical coexistence line and the low
spinodal line could be potentially treated as a quark mat-
ter. Then, the exotic structures of the strong-interaction
matter predicted by theoretical calculations should be re-
considered and revised accordingly, such as the
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quarkyonic matter [73, 74], pion superfluidity [75, 76],
color superconductors [77, 78], and the inhomogeneous
chiral condensates along the first-order phase transition
line [79]. In contrast, based on QCD theoretical calcula-
tions, besides the CEP already discussed in above, there
is also a possibility that the first-order phase boundary
ends at another critical point in the lower-temperature and
higher-density region according to the so called the
quark-hadron continuity [80, 81]. Below such a CEP, the
order of the QCD phase transition is a crossover because
the cold, dense QCD matter with three degenerate fla-
vors may have no clear border between superfluid nucle-
ar matter and superconducting quark matter. This means
that our study should be constrained to a very narrow re-
gion in the first-order phase transition, even if there is no
first-order phase transition by some possibility. There-
fore, the results surrounding the very low temperature
should be modified accordingly.

In the present study, we have only simply considered
the mean-field approximation, and the role of the import-
ant thermodynamic fluctuations has been ignored com-
pletely. Any attempts to go beyond the mean-field ap-
proximation are worth exploring to identify their effects
on the study via phase diagrams, the order of phase trans-
ition, and, particularly, the dynamics of the first-order
phase transition. Among these methods, a functional
renormalization group [63, 82, 83] and the Cornwall—
Jackiw—Tomboulis (CJT) formalism based on the two-

particle irreducible (2PI) action [84—86] are popular ap-
proaches. Such an extension is straightforward but tech-
nically complicated. Moreover, besides thermal fluctu-
ations, quantum fluctuations have simply been ignored in
the present study. According to the homogenous nucle-
ation theory, when the temperature is very low, and
R <B=1/T, the argument suggested by Linde [35] is not
satisfied, and the tunneling of the false vacuum will be in-
duced by quantum fluctuations. At the moment, we have
to calculate the tunneling rate for O(4) bounce in Eq. (15)
rather than the three-dimensional action in Eq. (16).
Therefore, all calculations included in the low temperat-
ure limit are considered in light of the assumption that
thermal fluctuations dominate quantum fluctuations.
Since the thermal fluctuations are suppressed when the
temperature is very low, the quantum fluctuations are be-
lieved to take effect and play a dominant role. Here, in-
corporating the quantumly-induced tunneling rate and the
thermally-induced tunneling rate in the quark-meson
model simultaneously is left for future consideration. We
believe all these studies, in both directions, will bring us
closer to the real QCD world.
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