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Abstract: In this study, we investigate exact spherically symmetric Gauss-Bonnet black hole solutions surrounded
by a cloud of string fluid with the cosmological constant in D > 4 dimensions. Both charged and uncharged cases are

considered. We focus on the de Sitter solutions in the main text and provide the anti-de Sitter solutions in the ap-

pendix. We analyze the features of event horizons and thermodynamic properties of the black hole solutions. The

mass, Hawking temperature, thermal stability, and phase transitions are discussed. Moreover, the equation of state

and critical phenomena associated with these solutions are explored.
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I. INTRODUCTION

General relativity (GR) [1] is the simplest and most
successful theory of gravitation. It was proposed over a
century ago and has been confirmed by many experi-
ments [2]. However, there are still several unknown is-
sues such as dark energy and dark matter, which indicate
that GR may not yet be perfect. These issues strongly mo-
tivate us to consider the possibility of a modified gravity
theory beyond GR. Moreover, as demanded by string the-
ory [3], black holes in higher dimensions must have high-
er curvature corrections. In the last decades, many pos-
sible modified gravity schemes have been proposed [4];
however, in most of these theories, higher derivative
equations must usually be solved. One solution is to con-
sider a specific combination of the higher-order polyno-
mial of the Riemann tensor such that the equation of mo-
tion remains as two derivatives. The simplest choice of
this type of theory is the famous Gauss-Bonnet gravity
[5]. In addition, a quadratic Gauss-Bonnet term also ap-
pears as the one-loop correction of heterotic string theory
[6].

A recent theoretical study proposed a scenario in
which the fundamental building blocks of our Universe
are extended objects rather than point objects [7]. The
most natural and popular candidate is the one-dimension-
al string object [8, 9]. A cloud of strings behaves like a
pressureless perfect fluid, and its one-dimensional charac-
ter means that the energy-momentum tensor only has a
spacial component. With this, many exact black hole

solutions have been obtained. Letelier [8] first presented a
cloud of strings model extension of the Schwarzschild
black hole. In this solution, the Schwarzschild radius of

the black hole is thereby enlarged as r, = %, where a
is the string cloud parameter. This solution may have sev-
eral astrophysical consequences [10]. Recently, many re-
lated studies have considered the string cloud as a fluid in
the spacetime background and constructed relevant exact
solutions. For example, except in GR, a black hole solu-
tion with a cloud of strings in four-dimensional Einstein-
Gauss-Bonnet gravity was constructed in [11]. Ghosh
et al. [12] discussed radiating black holes with a cloud of
strings in second and third-order Lovelock gravity. Later,
Rodrigues and Vieira constructed the Bardeen solution
with a cloud of strings and studied its thermodynamic
properties [13].

However, in most of these studies, only black hole
solutions without the cosmological constant were con-
sidered. Note that our current Universe is undergoing ac-
celerating expansion, which is known as the dark energy
issue. The simplest explanation for current cosmic accel-
eration is a nonzero positive cosmological constant [14,
15]. Moreover, the AdS/CFT correspondence usually re-
quires us to consider a black hole solution with a negat-
ive cosmological constant. In addition, AdS black holes
usually possess a considerably richer thermodynamical
phase structure; for instance, the well known Hawking-
Page phase transition can occur for AdS black holes [16].
Given the above motivations, we investigate a black hole
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in a cloud of strings background with a cosmological con-
stant in Gauss-Bonnet gravity in higher dimensions. Both
the uncharged and charged cases are considered, and we
investigate the thermodynamic properties of these black
holes in the presence of a cloud of strings. To enhance the
readability of the paper, we only consider the positive
cosmological constant (dS) solutions in the main text and
present the negative cosmological constant (AdS) solu-
tions in the appendix.

The remainder of this paper is organized as follows.
In Sec. II, we solve the field equation and obtain
(charged) black hole solutions coupled with a cloud of
strings and the cosmological constant. In Sec. III, we ex-
plore the thermodynamic properties, such as phase trans-
itions and critical phenomena, of black holes with and
without charge in dS space. Finally, we summarize our
results in Sec. IV. In addition, in the appendix, we briefly
discuss the black hole solutions in AdS space. We adopt
the units 871G =1and i=c=1.

II. GAUSS-BONNET CHARGED BLACK HOLE
SOLUTION

In this section, we derive Gauss-Bonnet charged
black hole solutions in dS spacetime surrounded by a
cloud of strings (SC). The action of Gauss-Bonnet grav-
ity with the cosmological constant A coupled to the Max-
well electrodynamics (ME) and a cloud of strings reads as

S = %/d4x\/—_g[R—2A+aLGB+Lf(F2)]+SSC, (1)

where g is the metric determinant, R denotes the Einstein
term, and L,(F?) represents the ME Lagrangian with the
scalar F = F,, F*, where F,, =A,,—A,,. Moreover, a is
the Gauss-Bonnet coefficient, and Lgg denotes the
second-order Lovelock (Gauss-Bonnet) term, which is
generally written as

-EGB = R2 - 4R#VRIJV + R,uv/la'RuMO- (2)

and Ssc is the action of a cloud of strings. The equations

S

. . . - - ()

of Tnot.lon can be obtained using 5 — » and - A,
which in our case are

Gy +H T, =0, 3)
dL(F?) )

V. | F* =0, 4

< dF? @

where G,, is the Einstein tensor, and H,, is the tensor re-
lated to the Gauss-Bonnet term, defined as

v

H = %LGB ¢" +2a(RR" - 2R"'R,,

—2R4

Avo

R+ R R p1r). (5)

T,, is the total energy-momentum tensor. Hence, Eq. (3)
reads as

G' + H" = -T*(CS) + T*(ME). (6)

Consider the following spherically symmetric metric an-
satz in the D dimension:

1 o
ds* = —f(r)df* + %dr2 +rydxdyd, (7)

where v;; is the metric of a D -2 dimensional constant
curvature space k= 1. For the sake of convenience, we
use n = D -2 instead of the dimension D and define

A=nn-1)2P. )

The cosmological constant is positive, which indicates
that the space is de Sitter. Now, Eq. (3) can be expressed
as

27r 2
?:rfw(n—l)(fz—ln(ml)%
1- 1-f2
+2a(n-n-2)=L [f’—(n—3) f}. )
r 2r

This differential equation is integrable, which can be
written as

f—1)}’:_n+1 .2

nor
p 2 r +Er T,.

(10)

{r"‘l(f— 1) (1 —a(n-1)(n-2)

By integrating the differential equation, we obtain the
general metric function of a Gauss-Bonnet black hole
[17]:

1’2

fe = D=2

J7 29
+
it 1 nrit 1

(11)

1+ l-da(m-1)n-2) (—llz—

The sign + before the square root refers to the two differ-
ent branches of metric solutions, and [18] proves that the
positive branch is unstable and the corresponding grav-
iton has negative mass. Therefore, we only consider the
negative branch. u is a integration constant related to the

015101-2



Gauss-Bonnet solution with a cloud of strings in de Sitter and anti-de Sitter space

Chin. Phys. C 48, 015101 (2024)

ADM mass via
327M s
T T 2
L .. . 12
K= wm— 1y, F(n+1> (12)
2

where V, is the volume of the n-dimensional unit sphere.
7 is associated with the total energy-momentum tensor
via

T = / rdvv"T,"(v), (13)

where an arbitrary constant ¢ leads to the integration con-
stant u. Next, we discuss the energy-momentum tensor of
the electromagnetic field and a cloud of strings.

A. String cloud model

Following the theory of a cloud of strings, the action
of a cloud of strings is called Nambu-Goto action, which
is given by [8, 11, 13, 19]

Ssc = / \—=ymdA°da’, (14)

where m is a positive constant related to the string, and A°
and A' are timelike and spacelike parameters, respect-
ively. The string world sheet ¥ is determined using

ox o

— 1
04 9B’ (15)

YaB = gyv(x)

y =dety,p. (16)

Here, we introduce the bivector associated with the string
world sheet:

_ ¥ Ox

= =,
ANr 9AB

(17)

where €' is the two-dimensional Levi-Civita symbol
normalized as €' = —€'" = 1. Within this setup, the Lag-
rangian density can be written as

1
2

1
Loc=m(-525.) 19)

Therefore, the energy-momentum tensor for one string is

foe =2 = . (19)

Replacing m with the proper density p, the energy-mo-
mentum tensor for a cloud of strings reads as [8, 11, 13,
19]

P,
Gt .

yng
SC —

The quantities p(—y)'/?, pZ*, and =*/(-y)'?* are mani-
festly gauge-invariant. The conditions for ¥ to be a sur-
face forming bivector are

sHuleypyl — 0, 3))

v, e = 0, (22)

where the square bracket [aBy] indicates anti-symmetriz-
ation of the indices. In conjunction with definition of the
bivector (17), we get

SIS, ST = T, (23)

The combination the above identity with the conserva-
tion of energy-momentum tensor 7% = 0 leads to

3, (N=gp2*") = 0. (24)

Under the static spherically symmetric condition, the only
nonzero component of the bivector X is X% = -X!'°, and
hence TJ(SC) = T} (SC) = —pX°'. Together with Eq. (24),

we obtain 8,(/rTJ) = 0, which implies

7(SC) = L diag(1, 1,0, ...,0], (25)
rl’l

where a is the string parameter, a positive integration
constant that satisfies (—y)/?0=a/r". In addition, a
should be less than one for the model to have a clear
meaning [11, 19]. From (13) and (6), we have

TSC = —ar. (26)

B. Maxwell electromagnetic theory

As for the electric term, the gauge field is A, = ¢(r)d,
under the static condition [20, 21], where ¢(r) denotes the
electric potential, and the electric field is E(r) = —¢'(r),
with ' denoting the derivative with respect to r. Accord-
ing to ME, the field-strength is
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F,, = E(r)(8.6, —6.5"). 27)

Simple calculation shows that F?> = -2E?, and from Eq.
(4), we get

d dL

4 <r EF> _o, (28)

which results in the generalized Gauss law

L g
drFz =~ (29)

where ¢ is a parameter associated with charge via
0> =8V2q¢* [22].Based on the Maxwell electric Lag-
rangian £=-F?, the Maxwell electric energy-mo-
mentum tensor takes the form

dL

TH(ME) = §"L—4-——
V(ME)=06,L=4

FHMF,). (30)

Now, from Eq. (29), we can obtain

F=9-_2 31)

ARV,
The energy-momentum tensor then reads as

2

TUME) = =55 diagl1.1.0...0) (32)
Therefore,
QZ
B — 33
T 4V2(n— Lyri—n 33)

Now, we are able to obtain the metric of Gauss-Bonnet
charged black holes with the cosmological constant in the

presence of a cloud of strings:

7'2

=t =g |1~

In this study, we keep to the common case k=1 in dS
space; thus, the sign before I is positive, and we briefly
discuss the AdS space case in the appendix.

III. THERMODYNAMICS

In this section, we first discuss the event horizons and
thermodynamics of dS black holes without charge [23,
24]. We consider the case with charge in the second part.
In the case without charge, the metric function (34) reads

as
2ar 1
1= 1—4&<—L———,ur*"*1>
n 2
. (39)

Here, @ = a(n—1)(n—2). Note that the event horizon is
located at f(r,) =0. Although we are not able to obtain
an analytical expression for r,, we can show the behavi-
or of f(r) as a function of » in Fig. 1 and search for zero

1 —4a(n-1)(n-2) (—i—i— 24 Qz)} .

T

+
2 1 2 2
2ot onrm o Ven(n—Dr

(34

[
points.

As shown in Fig. 1, in five dimensions, there is one
zero point in the case without strings. When there are
string clouds involved, there are two zero points. In other
dimensions, two horizons exist if strings are not con-
sidered; however, when string clouds exist, the event ho-
rizons disappear. That is, the involvement of the strings in
space-time may cause black holes to disappear. In the fol-
lowing, we consider the presence of black holes and dis-
cuss the thermodynamic properties of black holes. We
can express the ADM mass of a black hole in terms of the
horizon radius r, as

4
(n=vnv, (12 (=T 2) 22

n
32

M(r,) =

(36)

Evidently, a cloud of strings provides a source of negat-
ive mass, which may lead to instability of the system.
Based on black hole thermodynamics, the Hawking tem-
perature T is

a f(ry) 3 r:z""l (12 (nri" (&(n -3)+(n- l)ri) - Zarﬁ”—) —n(n+ l)ri""“)

4

4nlPn (2 +12) ' (37)
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(color online) Plots of the metric function f(r) as a function of radius, with the values: =1, /=1, and u = 1. Left: Case in the

absence of a cloud of strings, a = 0; Right: Case in the presence of a cloud of strings and a = 0.4.

a=0
T
1.5q
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-0.5}
-1.0t
Fig. 2.

r+ 0.0

a=0.2
T
1.5¢

- D=5
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D=7

0.5¢ — D=8
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_1_0-

(color online) Graphic representation of Hawking temperature vs horizon radius with the values =1 and /= 1. Left: Case in

the absence of a cloud of strings, a = 0; Right: Case in the presence of a cloud of strings and a =0.2.

This expression is complicated and hence analytical stud-
ies are rarely performed. In the following, we use numer-
ical analysis to explore the thermodynamic properties of
dS black holes. First, we plot a T —r, diagram.

Note that negative temperature indicates an unstable
state. From Fig. 2, we can see that strings may cause the
temperature to change from positive to negative in the ex-
tremely small radius region. In other words, the cloud of
strings makes the region partially unstable. Moreover, the
first law of thermodynamics of the black hole dM = TdS
indicates that the entropy S is

1dM 1 2 1
= ——=—(n-1 nofo___ - 4
S /drT P 8(n nmv,ry ((n—Z)ri + n)’ (38)

which is independent of the string parameter a.

A. Thermodynamical stability

Thermodynamical stability includes local and global
stability [25, 26], mainly determined by the behavior of
the heat capacity and free energy, respectively. A negat-

ive heat capacity indicates that the black hole is locally
unstable. Divergence with a change in sign in the heat ca-
pacity represents a second order phase transition, in
which the system changes from instability (stability) to
stability (instability). The heat capacity of a black hole is
given by

_OM _ oM or,
T 9T or, OT

(39)
With the help of Egs. (36) and (37), in our case, it reads as

(40)

where

Cy =(n—1)nV, (26 +r2)* (PQar™ —nr?(@n -3)

+(n—Dr) +n(n+ 1)r
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and

C, = 8nr"™2Qa* P (n—3) + ri6a(n + 1)+ P(n— 1))
+al (-7 +m+1)rd)
- 16alzri (2&/(11 -3)+(n—- l)rf) .

Then, we plot a C —r, diagram with different dimensions

terference of the strings, new phase transitions occur. We
can simply conclude that the cloud of strings has a signi-
ficant impact on the heat capacity, that is, it increases the
number of phase transitions. Moreover, we are interested
in the global stability in dS space-time, and a positive free
energy indicates that the black hole is globally unstable.
Free energy is given by

(n=DV,(Fi +F>)

and parameter values. F=M-TS= 3 (41)
As shown in Fig. 3, there is initially no phase trans-
ition in seven and eight dimensions; however, with the in- Here,
|
—n=l (*2& + 1) (12 (nrz” (&(n -3)+(n- 1)r2) - 2ar”+4) —-n(n+ 1)r2”+4)
+ 2 + + + +
n=2)2 n
Fl == - s
P (2a+r2)
rn+l
Fy=anr’™ - & l; +nr™t =2ar,.
[
We plot the F —r, diagram as follows: and the volume reads as
As shown in Fig. 4, the black hole is always globally
unstable, with or without a cloud of strings. 1
oM -V, r*
V=—-= u (43)

B. Equation of state and critical phenomena

Thermodynamic pressure P is thought to be associ-
ated with the cosmological constant via [27, 28]

A —-nn+1)

S0P 2n+1)

This is the exact thermodynamic volume of the system;
thus, it is different from the geometric volume of the

T (42) black hole. From Egs. (42) and (37), we can write the
equation of state as
"4 (nr (@(n—8nr, T =3)+r*(n—4nr, T — 1)) = 2ar}
P(T,r))=—= ( s ( ( * ) ( h )) +) , (44)
167
a=0 a=0.7
Cc Cc
800} 800F
600} 600F
400F 4001
200} 200F
0 (0' 2'0 r+ 0 2'0 r+
—200f -200f
-400F -400¢
Fig. 3. (color online) Graphic representation of heat capacity C vs horizon radius r, with the values @ =1 and /=1. Left: Case in the

absence of a cloud of strings, a = 0; Right: Case in the presence of a cloud of strings and a =0.5.
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a=0 a=0.6
F F
120}

- D=5

100} D=6 100}

8o} D=7 8o}
- D=8

60} 60r

40t 40F

20f 20fF

80 05 10 15 20™ © 05 10 15 20"
Fig. 4.  (color online) Graphic representation of free energy vs horizon radius with the values e =1 and /= 1. Left: Case in the ab-

sence of a cloud of strings, a = 0; Right: Case in the presence of a cloud of strings and a = 0.6.

The phase transitions occur at critical points, and the crit-
ical points occur at the inflection points of the isothermal
process that satisfies

oP

— =0,
ov

(45)

r;”'l (— 128 (n— 3+ 12&rf+2 +6aa(n — 3)r§ +(n-Dr* (arf, - r’c’))

Or equivalently,

or
or?

9P _
or,

=0. (46)

Solving Eq. (46), we can obtain the critical radius r. us-
ing

=0.

4 (6@ +r2) (12a+r?)

Taking n=3 as a simple example, we can analytically
solve the rational critical radius r, as

r,= % (ai Va? +2451) . (48)

Note that if the Gauss-Bonnet coefficient is negative and
the string parameter a is zero, the solution of r. is imagin-
ary, which indicates no critical phenomena in the system.
However, when the string parameter a # 0, the solution of
r. may be real and the phase transition can occur. In oth-
er words, similar to the phase transition of heat capacity,
a cloud of strings may increase the number of phase
transitions. Using the critical radius r,., we can obtain oth-
er critical values such as temperature 7., pressure P., and
volume V,.

In the next part, we succinctly discuss the thermody-
namic properties of a black hole with charge. The meth-
od is consistent with the previous treatment. We plot the
behavior of f(r) as a function of » in Fig. 5.

As shown in Fig. 5, whether the strings exist or not,
there is always a zero point at extremely small radii. Un-

(47)

like the uncharged case, the charge guarantees the exist-

ence of a black hole. The thermodynamic quantities are

given by
a=0.4
f
0.4
== D=5
D=6
0.2
D=7
- D=8
A L T . . N
0.0 02 04 06 08 12 14 '
-0.2F
—04L
Fig. 5. (color online) Plot of the metric function f(r) as a

function of radius with the values =1, I=1, u=1, a=04,
and 0=0.1.
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(1) Entropy
1dM 1 ( 2a 1)
= ——==-(n-1 N——=+-]. @
S /drT i 8(n nv,r; -2 +n (49)

This is the same as (38), and the entropy is also independ-
ent of charge.
(2) Mass

r2n! (l2 <2arﬁ*4 —nr2n (@(n -3+(n- l)ri) +

T=-

4
(n—"1nV, (_2& 3 (a_ [ +r2) .
n 2 +

32

2 .1-n
Q'r, )

M= 2(n—1)nV,

(50)

Here, in contrast with the string parameter a, the charge
0 provides a source of positive mass.
(3) Hawking temperature

0t
2V,

> +n(n+ l)ri”*“)

4nlPn (2a+12)

We plota T —r, diagram below.

As shown in Fig. 6, the charge behaves like strings; it
may also cause the temperature to change from positive
to negative in the small radius region.

(4) Heat capacity: The form of heat capacity is
identical to (40), but now

C =(n—nV, (2a+r2)’ (P (2arr = nr?(@(n-3)

ort
2V,

+(n=1rd)+ =) +n(n+ ),

+

C, =8nr(IF (28 (n—3)+(n—Dr} +@n-"7r3)
+(n+Dri (6a+r7))
—16al’r$ (2a(n-3)+(n—1)r7)
B 4P Qs (—651 +4an+(2n— l)rf)
v, ’

A C-r, diagram is shown in Fig. 7.

Again, we can see that the effect of charge on the heat
capacity is similar to that of a cloud of strings. With
charge involved, six dimensions that have not phase
transitioned before have a phase transition.

(5) Free energy: The form of free energy is identical
to (41), but with different | and F,:

F

r! ( 2a

T g+
P2a+r3

1) {n(n+ 12+

(n—-2)r? * n

2.4
+2 (Zar’fr4 —nr (&(n -3)+(n- l)ri) + or ) } ,

2V,
~ ~ 1’4 Q2rl—n
Fy=—2ar, +nr'> (a— l—; +ri) + 72(’1_;)‘/”.

(51

[
An F —r, diagram is shown in Fig. 8.

Charge makes the free energy at small radii tend to
infinity; however, it does not affect the sign of the free
energy. Hence, charge has only a numerical effect on the

a=0.2
T

0.2F [\
0.0

1 I

—~0.4H
= D=5
-06 D=6
-0.8 D=7
-1.0 — D=8
Fig. 6. (color online) Plot of Hawking temperature with re-
spect to horizon radius with the values e =1, /=1, a=0.2, and
0=0.01.
a=0.5
C
1 50 r — D=5
100f D=6
D=7
50 — D=8
. e L L
052 | —ola— 06 08 12 14
_50 L
-100¢
Fig. 7. (color online) Plot of heat capacity with respect to

horizon radius with the values a=1, /=1, a=0.5, and
0=00L1.
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a=0.6
F
120} = D=5
D=6
100}
D=7
80 — D=8
60
40f
20f
! - . .
0 05 10 15 20"
Fig. 8. (color online) Plot of free energy with respect to ho-

rizon radius with the values =1, 1=1, a=0.6, and 0 =0.01.

free energy. Charge also increases the area of negative
temperature and the number of phase transitions, and the
black hole is still globally unstable. The difference is that
the charge provides a source of positive mass whereas
strings provide a negative source for mass. The equation
of state for the charged case reads as

—2(n+2)

P(T,r.) = 3+2ﬂv

(&(—n +8nr, T +3)+ ri(—n +4nr. T + 1))]. (52)

n+4 2. 4 2n
[-4aV,r™ = Q7 rl =2nV,r;

Moreover, the equation of critical radius r, is given by

fi _
5= 0 (53)
and

fi = 12 [2Varatn =1 + 6ad(n -3y
+17 (=128 (n=3)~ ((n=Dry) +12ar7))
+ erj (6@(2” - 3) + (211 - l)rcz) ] :

fo=8aV, (6a+r)) (12a+r7).

IV. CONCLUSIONS

In this study, we obtain the Gauss-Bonnet black hole
solution with a cloud of strings in the de-Sitter space.
Both the uncharged and charged cases are considered. By
using the Einstein equation and static spherical ansatz, an
exact black hole solution is obtained. When the string
parameter a =0, our solution is reduced to the Gauss-
Bonnet black hole solution in the dS space [24]. Then, we
focus on the effect of a cloud of strings on the thermody-
namic properties and event horizons of the black hole.
We use the numerical method to calculate thermodynam-
ic quantities and analyze them. Interestingly, we find that
a cloud of strings provides a negative source for the black
hole mass, whereas it has only a quantitative influence on
temperature.

We also study thermodynamic stability based on heat
capacity and free energy. We find that the existence of a
cloud of strings has a significant impact on the stability of
the system. The strings can increase the number of phase
transitions owing to the heat capacity related to the
strings. However, globally unstable black holes are still
retained even with the existence of strings.

Moreover, we present the equation of state and dis-
cuss the critical phenomena. We express the conditions
for the phase transitions, and these conditions can be used
to find critical points. We take the five-dimension as an
example and discover that the critical points correlate
with the strings, which indicates that the existence of
phase transitions due to thermodynamic pressure is de-
pendent on strings. The question of whether strings have
any effect on other types of phase transitions will be left
for future studies.

APPENDIX: SOLUTIONS IN ANTI-DE SITTER
SPACE

Charged spherical symmetric Gauss-Bonnet black
holes with a cloud of strings in AdS space have been
studied in [29, 30]; however, they only discussed the ther-
modynamic properties in five dimensions. Here, we ex-
tend this solution with general topology and briefly dis-
cuss the thermodynamic properties in higher dimensions.
Now, the metric function freads as

r2

Skt D=2 |

For AdS space, the constant curvature space k=1, —1, or
0, corresponding to spherical, hyperbolic, and flat geo-
metries, respectively. For the sake of comparison with the
dS space, we only discuss & = 1. Here, we plot the func-

1—4a(n—l)(n—2)(l2—L—2—a QZ)} (A1)

+
1 2 2
rb et Vin(n—Dr

l

tion f(r) with respect to » in Fig. Al, and Hawking tem-
perature 7, heat capacity C, and free energy F with re-
spect to horizon radius r, in Fig. A2 .

Here, we find that in the AdS space, the charge still
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Fig. Al.  (color online) Plot of the metric function f(r) against radius with the values: Left: ¢=1,/=1,u=0,a=0,0=0;
Right:a=1,/=1,a=04,0=0.1.
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Fig. A2. (color online) Plot of Hawking temperature, heat capacity, and free energy (from top to bottom) vs horizon radius with the
values: Left: @ =1,/=1,a=0,0=0; Right:e=1,/=1,a=0.5,0=0.01.
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guarantees the existence of a small black hole in six, sev-

en, and eight dimensions. Moreover, charge and clouds of

strings have an influence on the number of transitions, as
in the dS space.
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