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Abstract: The structure of the low-lying collective excitations in 192Pd is examined within the recently proposed

microscopic shell-model version of the Bohr-Mottelson (BM) collective model. A good description of the excitation

energies of the lowest ground, y, and f bands, as well as the staggering function between the collective states of the y
band and some other energy-dependent quantities, is obtained. The low-energy intraband and interband quadrupole

dynamics is reasonably well described within the present proton-neutron sympletic based shell-model approach
without the use of an effective charge and compared with the predictions of nuclear structure models. The obtained

results of the present study shed light on the question of the existence of irrotational-flow type quadrupole dynamics,

which lies on the ground of the original BM model of quantized vibrations and surface-wave rotations in atomic nuc-

lei.
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I. INTRODUCTION

In nuclear physics, two fundamental models of the
nuclear structure exist. The first is the Bohr-Mottelson
(BM) collective model [1], which is based on the quantiz-
ation of the classical picture of surface vibrations and ro-
tations of nuclear systems [2, 3]. For over fifty years, the
understanding of quadrupole dynamics in atomic nuclei
has been fundamentally shaped by three solvable limits
within the BM collective model. These are 1) quadrupole
vibrations of spherical nuclei; 2) rigid-flow rotations of
strongly deformed nuclei, and 3) the y-unstable rotor
model applicable to transitional nuclei. These three types
of quadrupole collectivity have been well conceptually
described by the three exactly solvable limits of the BM
collective model [1]. Developed in the early 1950s, this
model continues to be a benchmark for comparing nucle-
ar structures even today.

The second fundamental model is the nuclear shell
model (see, e.g., [4]), which includes all many-particle
fermion degrees of freedom and serves as a general mi-
croscopic framework in which other collective models
can be founded. Many efforts have been made to estab-
lish the relationships between these two fundamental
models of nuclear structure and to give the BM model a
microscopic foundation, relating it to the nuclear shell

model. In its standard formulation, however, the BM
model cannot be naturally related to the microscopic
shell-model theory. The solution has been provided
through the algebraic approach by embedding the BM
model in the shell model, i.e., by expressing it as a sub-
model of the shell model (see, e.g., [5, 6]). Recently, the
BM model was embedded in the two-component proton-
neutron shell-model theory within the framework of the
proton-neutron symplectic model (PNSM) [7]. In the
present study, the term "microscopic”" implies that the
collective model (in which the collective observables are
expressed through the position and momentum coordin-
ates of all the protons and neutrons that constitute the
atomic nucleus) under consideration satisfy the Pauli
principle and is a submodel of the nuclear shell model.
One may alternatively refer to a model as semimicroscop-
ic if it adheres to the Pauli principle but employs a phe-
nomenological interaction. Such microscopic or semimi-
croscopic models are all shell-model submodels con-
sidered further.

The microscopic shell-model version [7] of the BM
model has been successfully applied to the description of
quadrupole dynamics in some strongly deformed [8],
transitional [9], and weakly deformed [10] nuclei. In ori-
ginal BM [1] collective model, it is assumed that the
quadrupole dynamics is of irrotational-flow type, which
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is actually related to the giant quadrupole resonance de-
grees of freedom. Indeed, the quadrupole vibrations of
the nuclear surface within the BM model represent a
high-energy collective mode, and the moments of inertia
required to describe the experimentally observed low-en-
ergy rotational states are five times smaller than the ir-
rotational-flow moments of inertia of the liquid drop val-
ues that the BM model predicts. This is not a problem be-
cause because in the practical application of the BM mod-
el, the moments of inertia are treated as free adjustable
parameters. The question whether the quadrupole excita-
tions of BM irrotational-flow type exist in some real nuc-
lei is controversial, widely discussed, and still remains
open.

The basic idea on the ground of the BM model is that
the atomic nucleus is a deformable liquid drop and hence
possesses a fundamental quantized surface vibrational
mode of spherical equilibrium shape, since in this case
there is no rotational degrees of freedom. The nature of
vibrational states is directly associated with the form of
the excitation quadrupole operator. Collective excitations,
corresponding to the original BM irrotational-flow sur-
face vibrations and rotations related to the giant reson-
ance degrees of freedom, are represented within the
PNSM by symplectic raising/lowering generators of
Sp(12,R) dynamical algebra, cf. Eqs. (6) —(7). These
symplectic generators, in large-dimensional Sp(12,R)
representations, contract [11] to the standard quadrupole
phonon operators in the original BM model, and the tradi-
tional phonon scheme picture can be naturally obtained.
Moreover, among Sp(12,R) algebra generators, beyond
the quadrupole excitation operators of the low-energy ri-
gid-flow rotations, there are the so called shear generat-
ors, which are the infinitesimal generators of irrotational-
flow (sometimes also referred to as surface-wave) rota-
tions. These shear operators, together with the rigid-flow
angular-momentum operators, define some of the pos-
sible momentum operators of collective flows within the
PNSM and close under commutation SL(6,R) [10] — the
group of volume preserving deformations and rotations in
the six-dimensional collective space RS. The later space
is spanned by the microscopic proton-neutron quadru-
pole-monopole operators Q;;(p,n) (cf. Eq. (1)), and they
define the microscopic collective configuration space of
the microscopic version of the BM model. The shell-
model basis required for the description of the irrotation-
al-flow quadrupole dynamics is provided in Ref. [10],
where it was argued that a characteristic feature of this
type of dynamics is almost linear monotonic increase in
the B(E2) transition strengths between the states of the
yrast band. In [10], as candidates that exhibit a quadru-
pole dynamics of BM irrotational-flow type were sugges-
ted ""Ru and !'"°Cd with experimentally measured intra-
band yrast B(E2) values of up to L =6 and L = 8, respect-

ively. However, in Ref. [12], the lifetime measurements
of the yrast states up to L=16 in '©2Pd were reported.
The extracted B(E2) transition probabilities for the yrast
band in '2Pd exhibit such type of almost linear monoton-
ic increase with respect to the angular momentum. The
quadrupole excitations in the yrast band of '“Pd were
even termed as "tidal waves" [12] and referred to as
"quadrupole running waves on the surface of the nucleus"
— in full accordance with the original BM model [2, 3]
and its microscopic shell-model version [10]. The tidal-
wave collective mode [12, 13] is expected to appear in vi-
brational or transitional nuclei and admits semiclassical
interpretation within the microscopic self-consistent
mean-field cranking approach, which allows to calculate
the yrast energies and intraband B(E2) transisition prob-
abilities. This, along the lines of Ref. [10], suggests '2Pd
as a more pronounced candidate, exhibiting quadrupole
dynamics of BM irrotational-flow type. Hence, the focus
of this study is to examine the experimentally observed
low-energy quadrupole dynamics in '92Pd within the mi-
croscopic shell-model version of the BM model. We re-
strict our considerations only to the low-energy collect-
ive states of the ground state (yrast) band and first two
excited y and £ bands or quasibands.

The Pd isotopes are a typical example of transitional
nuclei between spherical and y-unstable nuclei. This is
evident by the characteristic energy ratio Eu:/Ey =
2.3-2.4, which is intermediate between that of spherical
(E4]+/E21+ ~2-22) and y-unstable (E4]+/E21+ ~2.5) nuclei.
With neutron number increasing from N =50, quadru-
pole deformation increases from small values towards lar-
ger values in the middle of the shell. The two basic nucle-
ar structures of spherical and y-unstable nuclei are con-
ceptually and quantitatively described well within the
harmonic vibrator (HV) [2, 14] and the Wilets-Jean (WJ)
y-unstable [15] limits of the BM collective model [1].

The Pd isotopes were successfully described as trans-
itional between U(5) and O(6) limits within the IBM-1
[16—20]. They were also analyzed within the affine
SU(,1) algebraic approach [21] used to describe the
U(5)—-0(6) transition. Furthermore, '2Pd is located ap-
proximately on the middle of the transition from U(5) to
0(6), potentially very close to the E(5) critical point sym-
metry (CPS) [22], the latter possessing E:/Eyr ~2.20. It
was even suggested as an E(5) nucleus in Ref. [23] based
on the E4]+/E21+ energy ratio, the normalized B(E2;4] —
27) and B(E2;4}; — 23) transition probabilities, and the
reasonable agreement with 0 properties identified with
the 07 state of the E(5) CPS. However, later, the more
precise experimental data on the intraband B(E2) values
for the yrast band up to L =8 and the interband trans-
itions have shown disagreement with the E(5) symmetry
[24]. The nucleus '2Pd was on the focus in the paper by
Frauendorf [25], in which its low-energy spectrum has
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been examined in detail within the framework of various
nuclear structure models.

II. THE PROTON-NEUTRON SYMPLECTIC
MODEL
Collective observables of the proton-neutron sym-

plectic model are provided by the following one-body op-
erators [26]:

0= Z 5 (@4(6), m
Sy(@p)= é(x,-A(a)p,-s(ﬁ)+p,-s<a>xjs<ﬂ>), @
L) = é(x,-sm)pjx(ﬂ)—xﬁw)pm(a)), G
Tij(@.p) = Z pis(@)p;s(B), “)

s=1

where i,j=1,2,3; a,8=p,n;and s=1,2,....m=A—-1.1n
Egs. (1)—(4), x;5(@) and p;;(@) denote the coordinates and
corresponding momenta of the translationally-invariant
relative Jacobi vectors of the m-quasiparticle two-com-
ponent nuclear system and A4 is the number of protons and
neutrons.

The form of the Sp(12,R) generators (1)—(4) directly
reveals the dynamical content of the PNSM and physical
significance of the symplectic generators. The 21 quadru-
pole operators Q;;(@,8) determine the shape and orienta-
tion of the proton/neutron subsystem and the nucleus as a
whole. The 15 generators L;(@,B) are the infinitesimal
generators of SO(6) group, which generate the low-en-
ergy rigid-flow rotations in abstract six-dimensional
space. Among them, there are six components of stand-
ard three-dimensional angular momentum operators
Lij(p,p) and L;;(n,n) (i # j) of rigid-flow rotations of the
proton and neutron subsystem, respectively. The remain-
ing nine operators L;;(p,n) represent the collective excita-
tions of the combined proton-neutron system; cf. Egs.
(18) — (20). S;;(a,B) correspond to the 21 shear operators
of infinitesimal shape change in the six-dimensional
space, which together with operators L;;(a,) generate
GL(6,R)— the group of deformations and rotations in six
dimensions. The diagonal operators {S;(p,p),S:(n,n),
Si(p,n)} are the infinitesimal generators of scale trans-
formations (shape vibrations) along principal axis i. For
instance, consider the operator S..(p, p) = > [x.(p)p.s(p)+
P2s(P)x.s(p)], which using the standard Heisenberg-Weyl
commutation relations and the expression p.(p)=

—ind/0x(p), takes the form S..(p,p)=—iA[> ,2x.,(p)d/
0x,(p) +m]. Then, the GL(1,R) € GL(6,R) group operat-
or explifS .(p, p)] is a simple scaling operator along the z-
axis of the proton subsystem, since e®=PP¥ (x,(p),
xys(p)v xzs(p)) = \Pp(xxs(p)v xys(p)7 ezgxzs(p)) with § =
1,2,...,m. The same considerations are valid for other
scaling operators. It should be observed that collective
flows imply that group elements act uniformly on each
many-particle coordinate. Monopole (breathing-mode)
shape vibrations occur when scale transformations are
equal along all three spatial directions: x, y, and z. Con-
versely, when deformations differ along these three spa-
tial directions, they represent quadrupole shape vibra-
tions in either proton, neutron, or a combined proton-
neutronsystem. Hence, the off-diagonal operators {S ;;(p, p),
Sii(n,n),S;i(p,n)} (i # j) represent the infinitesimal gener-
ators of irrotational-flow (surface-wave) rotations of the
proton, neutron, and combined proton-neutron system,
respectively, because a shape rotation is generated by
continuously shrinking along one axis while at the same
time expanding along another. Thus, an irrotational sur-
face wave is generated, representing a shape rotation
without any actual circulation of matter density. This is
where the term 'irrotational-flow' (curl-free) rotation ori-
ginates. In this way, the 36 operators of the group
GL(6,R) = {L;j(a,p), %S ;j(a,B)} are obtained. They are the
momentum operators, which generate different linear col-
lective flows in nuclear system — i.e., the basic collective
modes —vibrational flows, rigid- and irrotational-flow ro-
tations. When only the volume-preserving deformations
and rotations are considered, i.e. excluding the monopole
shape vibrations, one obtains the kinematical subgroup
SL(6,R) C GL(6,R). Finally, operators T;;(«,8) are the in-
finitesimal generators of monopole and quadrupole mo-
mentum tensor. Among them are the many-particle kinet-
ic-energy operators of the proton, neutron, or combined
proton-neutron system. For more details concerning the
dynamical content of the PNSM, we refer the reader to
Ref. [26].

The Sp(12,R) generators can be conveniently ex-
pressed in terms of the harmonic oscillator creation and
annihilation operators

Bins = \/@ (s~ L),

@

bins = | - (@) + miwp,«s(m) 5)

in the following O(m)-invariant form [27]:

Fij(a,p) = ija,sbjﬂ,s’ (©)

s=1
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Gij(a,’ﬂ) = Z bi(y,xb/ﬁ,sv (7)
s=1
e .
Aij(a,’ﬁ) = 5 Z(bila,sbjﬂs + bjﬁ,fb?w,s)' (8)

s=1

The operators (8), and (6)—(7) are related to the proton-
neutron valence-shell and giant resonance degrees of
freedom, respectively.

In terms of operators (6)—(8), the generators (1)—(4)
of the Sp(12,R) algebra become [27]

1
Oii(a,p) = Ajj(a.B) + 3 Fij(a,p)+ Gij(avﬁ):| ) )

Sij(a,B) =1 {Fij(a’,ﬂ) _Gij(a'rﬁ):| > (10)
Lij(a"ﬁ) =i |:Aij(a’ﬁ) _Aji(ﬁ’ a’):| ’ (11)

1
Tij(a,pB) = Ajj(a,B) - 3 {Fij(a’ﬁ) + Gij(a»ﬂ)} ) (12)

from which it is evident that shear operators S;;(a,8) are
related with the giant-resonance irrotational-flow degrees
of freedom.

The microscopic SM version of the BM model is
defined by the following reduction chain [7]:

Sp(12,R) > SU(1,1)®S0(6)
(o) A, v
>U1)®SU,,(3)®S0(2) > SO(3),

P Aw v g L (13)

where the quantum numbers that characterize their irredu-
cible representations are provided below for the different

subgroups. The SU(1,1) Lie algebra, related to the radial
dynamics, is generated by the shell-model operators [7]:

1

S = 5 Z F(a,a), (14)
1

§® =2 > Ge.a), (15)
1

S = 5 > Aa.a), (16)

which are obtained from (6)—(8) by the contraction with

respect to both indices i and a. The group SO(6) can be
expressed through the number-preserving U(6) generat-
ors A"™(a,B) (8) in the standard way by taking their anti-
symmetric combination [7]:

AM(@,p) = A% (. ) - (=D'AM™M (B, ). (7

The generators of different SO(6) subgroups along the
chain (13) are provided by the following operators

M = V3I[AM(p,n) - A (n, p)], (18)

L™ = N2[A™(p, p) + A (n,n)], (19)
and

M = -V3A%a,B) = —i V3[A%(a,B) - A°(B,a)], (20)

which generate SU,,(3) and SO(2) groups, respectively.
The two groups SU,,(3) and SO(2), by construction, are
mutually complementary [28] within the fully symmetric
S0O(6) irreps v = (v,0,0)s and form a direct product sub-
group SU,,(3)®S0(2) c SO(6). Hence, SU,,(3) irrep la-
bels (4,u) are in one-to-one correspondence with SO(6)
and SO(2) quantum numbers v and v based on the follow-
ing expression [7].

ws= P (/1 LA %) &) (1)

2
v=+v,+(v-2),...,0(x1)

The reduction rules for SU,,(3)>SO(3) are given in
terms of a multiplicity index ¢, which distinguishes the
same L values in the SU,,(3) multiplet (4,u) [29]:

q = min(4,u), min(4,u) —2,...,0 (1)
L = max(4,u), max(d,u)—2,...,0(1); g=0
L=qg,q+1,...,g+max(4d,u); g#0. (22)

According to the SU(1,1)®S0O(6) structure, the mi-
crosopic quadrupole-monopole proton-neutron collective
dynamics splits into radial and orbital motions. Then, the
wave functions of the microscopic shell-model version of
the BM model can be represented as products of radial
functions and orbital SO(6) wave functions [7]:

Y o novgrm (1, Qs) = Rﬁ" (V)quLM(QS), (23)

where the orbital part Y}, ,,(Qs) is presented by the SO(6)
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Dragt's spherical harmonics [30, 31] and are character-
ized by SO(6) seniority quantum number v.

III. APPLICATION

A. Model Hamiltonian

A general shell-model Hamiltonian within the PNSM
can be considered as

H=H,+V(0), (24)

where H, denotes the Harmonic oscillator Hamiltonian

5 1
H():—mvz'FEszrzEth, (25)

and the collective potential V(Q) is a rotationally invari-
ant function of the quadrupole operators (1) in the envel-
oping Sp(12,R) algebra. Thus, the collective potential
V(Q) is a well-defined shell-model operator.

In the microscopic shell-model version of the BM
model, the collective potential is as follows:

V=V, (26)

where ¢;; = Q;j(p,n). Furthermore, V(g) is a rotationally
invariant function that can be built up from different
powers of the quadrupole moment operators g;;.
However, since the potential V(8,y) of the BM model can
be expressed in terms of the microscopic quadrupole mo-
ment operators ¢;;, i.e. [gxql? ~pB* and [gxgxq]? ~
B° cos 3y, any BM Hamiltonian of the form

2

h
Hpy = _Evéohr + V(ﬂ’ 7) (27)

immediately defines a microscopic shell-model Hamilto-
nian

H=K(p,n)+V(q), (28)

2

28
. .. 1

particle kinetic energy K(p,n)=WZiSPiS(P)Pis(n)=

where operator ——V3 is replaced by the many-

1
WTO(P,H). A general Hamiltonian of the microscopic
shell-model version of the BM model can therefore be ex-

pressed in the following form [32]:
H=K(p,n)+V(r.B.7y). (29)

Using the relation (8,y) < (4,u) [33] and linear mapping

of the rigid-rotor Rot(3) ={L;;,q;;} algebra invariants to
those of the SU(3) = {L;;,¢i,}, the collective potential

V(rB.y) = f()Y_ CpyBY (B cos3y))  (30)

P4
can be represented in a much simpler form as follows:
V(B.7) = £ Cpry(CUSUB) +3)" (C3ISUB)I)”.
pq
(31

In the present application, we use the following algeb-
raic model Hamiltonian:

H= HDS +vaix +Hres- (32)

The dynamical symmetry Hamiltonian is chosen to be of
the form:

Hps = Hy + Veon, (33)
where
Veo = CC[SU (3] + D(C1[S U, (3)])?, (34)
and
Hyes = aC5[SO(3)] + bX¢ + X, (35)

It should be noted that the collective potential V. is of
type (31). The first term in Eq. (33) represents the har-
monic oscillator shell-model mean field that defines the
shell structure, while V.o in turn splits different SU,,(3)
multiplets in energy. Furthermore, X4 ~ [Lx 0“ X L]? and
X§~[LxQxQ*xL]” terms with Q¢ =g;; in Eq. (35)
are the third- and fourth-order operators in SU(3) —
SO(@3) integrity basis {C,,Cs,L* X§,X4} [34, 35], repres-
enting a part of the residual rotor Hamiltonian. Further-
more, we indicate that the Hamiltonian Hsy = Hy + Hyes =
Hy+al? +bX§ + cX{ actually represents a shell-model im-
age of the rotor model Hamiltonian H.. = Al + A2+
AsL; [36] (see also, e.g., Ch. 7 of [37]), which addition-
ally provides a physical significance to the high-order op-
erators in the SU(3) — SO(3) integrity basis.

Usually, in contrast to the present application, the
shell-model image Hsyw of the rotor-model Hamiltonian
was used in practical calculations for a single SU(3) irrep,
for which the rigid-rotor collective dynamics is mapped
to the shell-model fermion dynamics. Further, it is known
that the X§ and X§ operators introduce an odd-even stag-
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gering in the y band of y-rigid type [36]. In Ref. [10],
however, it was shown that by modifying them, it is pos-
sible to produce a y-soft odd-even staggering pattern for
the states of the y band, which is a characteristic of the y-
unstable WJ model (see Figs. 1 and 4 for '2Pd). Thus,
based on [10], we use the following parametrization
c=c(1-(=1)%/v2) for the model parameter in front of
the last term in Eq. (35).

In Ref. [12], it has been demonstrated that the quadru-
pole motion of the tidal wave is marked by a significant
increase in quadrupole deformation (and consequently,
the moment of inertia) as angular momentum L increases
within the yrast band. This is in contrast to strongly de-
formed nuclei with well-established rotational bands,
where deformation and hence moment of inertia remain
approximately constant. To address the observed in-
crease in the moment of inertia, various expressions for
spin- and energy-dependent inertia parameters have been
employed in the literature. For instance, in Ref. [38], a
two-parameter "soft-rotor formula"

L(L+1)
290(1 +aL+BE;)’

E(L,E) = (36)

was proposed for the excitation energies in the transition-
al nuclei with the moment of inertia J = Jo(1 + aL+BE;),
where E; denotes the excitation energy of the correspond-
ing bandhead of § and y bands.

In Ref. [25], it was demonstrated that tidal wave ener-
gies of the yrast band for transitional nuclei can be de-
scribed by the following expression:

L(L+1)

ELAY =556y

+V(B,7) (37)

where the moment of inertia depends linearly on L and is
given by J =0,+0,L. This energy expression is ob-
tained by the standard BM Hamiltonian, in which only
the SO(3) kinetic energy term is maintained. In Ref. [32],
it was demonstrated that the standard BM Hamiltonian
can be obtained as a contraction limit of the microscopic
many-particle nuclear Hamiltonian. Alternatively, this
can be realized by restricting the latter to the scalar O(m)
irreducible collective space of the microscopic shell-mod-
el version of the BM model within the proton-neutron
shell-model approach. Thus, by replacing the full many-
particle kinetic energy in Eq. (28) with only its SO(3)
components (cf. [32]), our model Hamiltonian (33) will
produce energies of the type (37). Additionally, consider-
ing spin-dependent moment of inertia J =@y +®,L, we
can describe the tidal wave energies of the yrast band, as
pointed in Ref. [25]. Thus, to account for the observed
moment of inertia, we follow Refs. [25] and [38] and use
a spin-dependent inertia paramater of the type

. Similar parametrization is used in Ref.

20+, o . o
[39], w?qere the five-dimensional collective Hamiltonian,
based on the relativistic covariant density functional the-
ory, is applied to the yrast band tidal-wave collective
mode in '2Pd.

B. Transition operator

The components of excitation operator are selected to
be of the form [10]:

(eZ) V3

A2

(D [F*(a,a)-G™(a,a)],  (38)

which are precisely the infinitesimal generators of irrota-

1
T
a;=

(-iBj(p)+Bj(n)) with (a)" = a; [40]. The normalization
factor 1/2 in front of S*"(a,a) operators in Eq. (38),
which in Ref. [10] was included in the definition of the
SL(6,R) generators S>"(«,f), originates from the form of
the  quadrupole  operators  Q*'(a,B) = Q?{t”(ﬁ)(a,ﬁ)+
Qlsm@p)  with Qg (@.p)= V3A™(@,f)  and

1 1
Qs (@) = 5 () VIF™"(a.) = G*"(a. )] = 557"(a. B)
The latter ensures the self-consistent form of the full set
of Sp(12,R) algebra generators.

tional-flow (surface-wave) rotations and

C. Numerical results

The shell-model considerations, based on the proxy-
SU(3) scheme [41, 42] provide the Sp(12,R) irreducible
representation Op-0h [24]4 for '22Pd, which is fixed by the
leading proxy-SU(3) irrep (18,6). The relevant irredu-
cible collective space for '2Pd, spanned by the Sp(12,R)
irreducible representation Op-04 [24]¢ and restricted
solely to the fully symmetric U(6) irreps, is provided in
Table 1. The SU(3) multiplet (18, 6) is contained in the
maximal seniority SO(6) irreducible representation
vp =24 of the Sp(12,R) bandhead structure, defined by
the minimal Pauli allowed number of oscillator quanta
Ny =403.5. The latter also includes the zero-point motion,
obtained by filling the Nilsson levels of the three-dimen-
sional oscillator with protons and neutrons. Further, as-
suming a pure SU,,(3) state and using the expression
[43]:

8_;(2“/1)
2 Ny,

(39)

the quadrupole deformation of (18, 6) irreducible repres-
entation of '“Pd can be readily obtained with value
£=0.16. This is slightly smaller than the experimental
value 0.20 [44]. The latter suggests that vertical mixing of
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Table 1. Relevant SO(6) and SU,,(3) irreducible representations, which are contained in the Sp(12,R) irreducible collective space

0p —0h[24]6 of '92Pd and obtained according to Eq. (21).

N v\y -.-26 24 22 20 e 4 2 0 -2 -4 -20 =22 -24 -26
26 (26,0) (25,1) (242) (23,3) (15,11) (14,12) (13,13) (12,14) (11,15) (3,23) (2,24) (1,25) (0,26)
24 (24,00 (23,1) (22,2) (14,100 (13,11) (12,12) (11,13) (10,14) (2,22) (1,23) (0,24)
22 (22,00 (21,1) (13,9) (12,10) (11,11) (10,12) (9,13) (1,21) (0,22)

No+2

> Qo WD 02
0 (0,0)
24 (24,00 (23,1) (22,2) (14,10) (13,11) (12,12) (11,13) (10,14) (2,22) (1,23) (0,24)
22 (22,0) (21,1 (13,9) (12,10) (11,11) (10,12) (9,13) (1,21) (0,22)

No X X :
> o an 0
0 0,0

different SU(3) multiplets can be used within the W+ Dw+2)(v+3)v+4)

Sp(12,R) irreducible collective space Op—O0h[24]s.
Hence, we introduce additional vertical mixing Hamilto-
nian:

vaix = f(&a . Fz(a9a) + h.C.), (40)

where ¢*M =

V3[A*M(a,a) - A*M(b,b)] are the SU,,(3)
quadrupole operators [40]. H,mix mixes simultaneously
different SO(6) and SU,,(3) irreducible representations of
the type (v)=(vo+2k) and (do+2k,u), respectively,
where (Ao,up)=(18,6) and k=0, 1, 2,..., within the
SL(6,R) multiplet built on vy = 24.

The basic matrix elements of Sp(12,R) generators
along the chain (13), defining the microscopic shell-mod-
el version of the BM model, are provided in Ref.[40].
Specifically, the matrix elements of the tensor interaction
A¥(a.B) - FX(a.B) = [A*(.B) X FX(.B)0ymtiome0  WETE
given. Using the technique of Ref.[40], the SO(3)-re-
duced matrix elements of the interaction g¢*-F?*(a,a) =

\/ %[ZIQXF (a,a))Y=5,=11=om=0 10 Eq. (40) can be simil-
arly obtained in Eq.(40):

(on+2,p  E+2,u+2,v+2,4'L;||§* - F*(a,a)llonpEvvqL)

=— \ﬁ; VAQ(on E';nE) \/(v+2)(v+6)

n+D(n+2)(c+n+v+6)(c+n+v+8)
(c+n+1)(oc+n+2)

Qu+6)2u+8)2(v*+5u+6)
X <(A,Um 20 <Ali+2,2u)>

X (A4, WgqL;(2,002/(A+2,)qL),

(41)

where VAQ(on' E";nE) = VQ(onE')—Q(onE)  and

1
Q(onE) = 5 S0 2E2 -2 +14(E, —n,) - 2a(2E, - n,)]

[40, 45]. The matrix elements of H., (35) in an
SU(3) > SO(3) basis are provided in Ref. [46]. Hence, we
already have all the required computational pieces for
performing shell-model calculations within the PNSM.
We diagonalize the model Hamiltonian (32) within
the SL(6,R) irreducible collective space built on v, =24
up to energy 20%hw. The results for the excitation ener-
gies of the lowest ground, y and £ bands in '%2Pd are com-
pared with experimental data [23, 47] in Fig. 1. The val-
ues of the model parameters, obtained by fitting to the ex-
citation energies and B(E2;2} — 0}) transition strength,
are: C =-0.3988, D =0.00017, b =-0.00039,
¢=0.000129, ¢=-0.00123 (in MeV), and 1, =3.57,
n = 1.56 (in MeV~!). The figure shows a good descrip-
tion of the energy levels of the three bands under consid-
eration, including the strong odd-even staggering of y-soft
type between the states of the y band. Furthermore, in Fig.
2, the theoretical predictions for the intraband yrast B(E2)
transition strengths are compared with the experimental
results [12] and some other nuclear models, whose data
are extracted from Refs. [12, 25, 39]. We observe that the
almost linear behavior, characteristic of irrotational-flow
quadrupole dynamics of BM type, is well reproduced by
the present approach up to L = 14, with the exception of
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Fig. 1. (color online) Comparison of the excitation energies
of ground, y, and $ bands in '2Pd with those obtained via ex-
periment.
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Fig. 2. (color online) Comparison of the experimental [12]

and theoretical intraband B(E2) values in Weisskopf units
between the states of the ground band in 92Pd. Theoretical
predictions of the five-dimensional collective Hamiltonian
based on the relativistic self-consistent mean field without
(5DCH) and with (SDCH¥*) spin-dependent moment of inertia
[39], the interacting boson model (IBM) [25], the general col-
lective model (GCM) [25], and the cranking + shell-correc-
tion tilted-axis cranking (WS-SCTAC) [12] semiclassical cal-
culations are provided as well. No effective charge is used in
the cases of PNSM, WS-SCTAC, 5DCH, and SDCH*.

only the transition strength B(E2;167 — 147) being
slighly underestimated. It turns out that the fourth-order
term X, in H, significantly modifies the values of the
ground-state quadrupole collectivity at high angular mo-
menta, and thereby, makes the B(E2) curve less linear, as
observed in Fig. 2. For smaller absolute values of para-
meter ¢, we obtain more linear-like behavior. This repro-
duces the experimental yrast B(E2) values in '2Pd in a
better manner, but, it destroys the strong y-unstable struc-
ture of the y band. It is important to highlight the signific-
ant underestimation of ground-state (yrast) band quadru-
pole collectivity within the IBM, characterized by a pro-

Table 2.
band B(E2) transition probabilities (in Weisskopf units) for the

Comparison of the theoretical interband or intra-

lowest states of y and 8 bands in '2Pd with the known experi-
mental data [23, 25, 47]. No effective charge is used in the
calculation.

i f B(E2;L; = Lf)m B(E2;L; = Lf)exp
2 01 9.7 2(1)
2, 21 26.2 15(2)
2 4 7.1 -

31 2 5.3 -

31 4 43 -

31 2 47.6 -

4, 4 16.9 <8
4, 2, 34.2 45(9)
4 2y 20.3 3D
0, 21 0.02 < 0.0004
02 2 0.003 96(40)

nounced cut-off effect in the curve. This behavior is typ-
ical for transition probabilities calculated using compact
spectrum-generating algebra (see, e.g., the discussion
concerning Fig. 1 of [10]). Furthermore, similar cut-off
behavior was also obtained for '°Cd in Ref. [10] when
the rigid-flow quadrupole dynamics was considered. Ad-
ditionally, in Table 2, we compare the known experi-
mental B(E2) values [23, 47] with the theory for the
nonyrast states of y and f# bands in '©Pd. Among the sev-
en observed B(E2) transition probabilities, six were found
in qualitative agreement. For the quadrupole moment of
excited 27 state, we obtain Q(27) =—0.52e¢b to compare
with the experimental value —0.20(15)eb [48]. We stress
that no effective charge is used in our calculations, i.e.
e=1. From Table 2, a disagreement of the transition
probability from the 05 state of the £ band to 2* state of
the y band is evident, which suggests that probably some
important components are missed in the model interac-
tion.

In Fig. 3 we provide the SU(3) decomposition of the
wave functions for the collective states of ground, y, and
S bands in '2Pd for different angular momentum values.
In the present scheme, we use the orthonormal Vergados
basis [49], labeled as ¢, obtained by Gram-Schmidt ortho-
gonalization of the Elliott states [29]. Hence, the Ver-
gados basis preserves the physical significance of the El-
liott state-labeling prescription to the greatest extent. For
example, the Vergados f band, designated as ¢ =0, is
defined as pure Elliott K =0 band. Vergados y band,
g =2, consists of Elliott K =2 and K =0 states so as to
be orthogonal to ¢ =0. Similarly, the other ¢ bands can
be considered in the Vergados basis. Practically, to a giv-
en K band in the Elliott basis corresponds a ¢ ~ K band in
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Fig. 3. (color online) SU(3) decomposition of the wave func-

tions for the states of the ground, y, and B bands in '92Pd for
different angular momentum values. The used quantum num-
bers are (1,u)q.

the Vergados basis up to small K-admixtures due to the
Elliott-Vergados transformation, which are negligible for
comparatively large-dimensional SU(3) irreducible rep-

resentations or/and small angular momenta (the case of
the experimentally observed £ and y bands).

In Fig. 3, it can be observed that SU(3) symmetry is
poorly broken and significant K-admixtures are obtained
for the states of ground, y, and f bands, generated by the
X4§ and X§ terms. The observed bands of collective states
can still be labeled by the dominant g ~ K character. Fur-
thermore, it can be observed that the SU(3) decomposi-
tion amplitudes are spin-dependent, i.e., SU(3) is not a
good quasi-dynamical symmetry in the sense provided in
Refs. [50, 51]. The latter implies that there is no adiabat-
ic decoupling of the rotational and high-energy vibration-
al degrees of freedom within the PNSM for '©2Pd. These
are expected results for vibrational- and transitional-like
nuclei with a characteristic energy ratio between that of
HV (E4]+/E21+ ~2-2.2) and y-unstable WJ (E4I+/E2]+ ~2.5)
limits of the BM model. For such nuclei, an important
role in nuclear dynamics is played by the coupling of dif-
ferent degrees of freedom. This is also confirmed by the
present shell-model calculations for '2Pd. In this regard,
it is worth mentioning that the coupling of the collective
and quasiparticle excitations, when the adiabatic approx-
imation is not valid, can be considered, e.g., for vibration-
al and transitional nuclei within the semiclassical tidal-
wave approach [13]. The latter is in contrast to the
present PNSM application, where the coupling of differ-
ent collective (irrotational-flow rotational and high-en-
ergy vibrational) degrees of freedom is obtained. Gener-
ally, the quasiparticle excitations could also be con-
sidered in the present symplectic based proton-neutron
shell-model approach by including the excited Sp(12,R)
irreducible representations. The latter, however, requires
an extension of the PNSM computational technique for
performing symplectic representation-mixed shell-model
calculations by involving different types of symplectic-
breaking interactions.

D. Staggering

Different staggering functions are widely used to
characterize the collectivity in atomic nuclei. For in-
stance, different experimental and theoretical patterns for
the quantity [52]

S(L) — [EL_EL—I];‘ZEE‘L—I _EL—2]’ (42)

corresponding to various types of collectivity, have been
provided in Ref. [53]. The staggering function S(L)
between the states of the y band is well known to distin-
guish the type of rotational dynamics. Thus, a small, pos-
itive, and constant value of +0.33, which is a characterist-
ic feature of S (L) for the axially- symmetric rotor, is ob-
tained. For y-rigid and y-unstable quadrupole motion, the
staggering patterns show strong odd-even staggering,
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Fig. 4. (color online) Comparison of the experimental and
theoretical staggering function S(L) (42) for the states of the y

band in 102Pd.

having minima at odd and even values of L, respectively.
We apply function S (L) provided by (42) to the y band
energies in 'Pd and compare its experimental and theor-
etical values in Fig. 4. In the figure, it can be observed
that the staggering function S(L) is well described with
minima at even L values — in accordance with the y-un-
stable rotor behavior [53]. It is important to note that the
type of odd-even staggering between the collective states
of the y band itself can not be used to distinguish between
the rigid-flow and irrotational-flow dynamics, because, as
demonstrated in the present study, the modified X5 or/and
X4 terms are able to produce y-unstable type of stagger-
ing — in contrast to the previous calculations with spin-
independent strengths. Moreover, within the present pro-
ton-neutron shell-model approach, this type of a y-un-
stable staggering can be obtained in both cases when the
excitation operator belongs to SU(3) or SL(6,R) algebra
generators, i.e., when we have rigid-flow or irrotational-
flow type quadrupole dynamics. Thus, a more reliable
criterion for distinguishing between the two types of rota-
tional dynamics is the form of the excitation operator and
its (classical) dynamical content. Compared to the energy
spectra of '2Pd provided in Refs. [23, 25], here the pos-
sible 6" state of the y band with energy of 3.003 MeV
(which is below the 5* state with energy 3.074 MeV) is
included into the calculation.

E. Moment of inertia

The tidal wave, considered in Refs. [12, 13], was
characterized by the following three features: 1) linear in-
crease in E(L); 2) monotonic linear increase of the yrast
B(E2) values as a function of the angular momentum L;
and 3) nearly constant ratio B(E2)/J(L). From Figs. 1
and 2 , it can be observed that the first two characteristic
features of the tidal wave are satisfied. To test the third
characteristic, in Fig. 5, we compare the theoretical value
for the (kinematical) moment of inertia for '“2Pd, defined
by the expression [12]

Fig. S.
theoretical (kinematical) moment of inertia J(L) as a function

(color online) Comparison of the experimental and

of the angular momentum L for the yrast band in 192Pd.

2L
E(L)-E(L-2)’
with the corresponding experimental values. The figure
shows that the experimental moment of inertia for the
yrast band is reasonably well described, being slightly un-
derestimated for L = 8 —12 and slightly overestimated for
L = 14. Furthermore, in Fig. 6, we present the theoretical
and experimental values for the ratio B(E2)/J (L) for the
yrast band in '2Pd. From the figure, a nearly constant ra-
tio B(E2)/J (L) can be observed for the states of the yrast
band. In this way, the present shell-model calculations
fulfill all three characteristic properties proposed in Ref.
[12], and thereby, support the semiclassical interpretation
of "tidal wave" motion suggested for '2Pd. The tidal
wave concept [12, 13] provides a new mechanism for the
generation of the angular momentum. In contrast to the
standard rigid-rotor model, in which the energy and angu-
lar momentum increase with the rotational angular fre-
quency, the energy and the angular momentum of the tid-
al wave increase due to the increase in the deformation
(and hence the moment of inertia) while the rotational

—e—Exp
—a— Theory

JL) = (43)

102Pd

15}

B(E2).7 (L)
)

\=><o

10 12 14

0 1 1 1 1
0O 2 4 6 8

L [h]
Fig. 6. (color online) Comparison of the experimental and

theoretical ratio B(E2)/J(L) as a function of the angular mo-
mentum L for the yrast band in 1°2Pd.
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frequency remains almost constant [12, 13].

IV. CONCLUSIONS

The structure of the low-lying collective excitations in
12Pd is examined within the recently proposed micro-
scopic shell-model version of the BM collective model.
In this regard, we remind that the original BM model for
even-even nuclei admits only one shell-model irreducible
representation—namely the scalar representation. This
representation only produces an irrotational-flow dynam-
ics of BM type. The scalar irreducible representation of
the BM model corresponds to the case of doubly closed
shell nuclei. In contrast, its microscopic version contains
many shell-model representations, which are determined
by the underlying fermion structure of the nucleus and are
provided by the intrinsic Sp(12,R) bandhead structure
(o).

The nucleus 2Pd was proposed in the literature as a
good example, exhibiting "tidal wave" running on the
nuclear surface [12], which corresponds to the original ir-
rotational-flow type quadrupole dynamics of BM type.
The microscopic shell-model basis underlying the irrota-
tional-flow collectivity was recently provided in Ref.
[10], in which the components of the excitation operator
coincide with the infinitesimal generators of irrotational-
flow rotation. It has been demonstrated that the irrotation-
al-flow dynamics in the harmonic vibrator and WJ type
submodels of the microscopic version of the BM model
can be appropriately associated with the Lie algebra of
SL(6,R)— the group of volume preserving deformations
and rotations in the six-dimensional collective space R®,
spanned by the microscopic proton-neutron quadrupole-
monopole operators Q;;(p,n). To reveal the dynamical
content of the PNSM and its physics, we reconsidered in
more detail the physical significance of the symplectic
generators, generating the basic collective flows in the
many-particle proton-neutron nuclear system. In this way,
the nature of low-energy quadrupole states can directly be
related to the form of the excitation quadrupole operator
(e.g., SUQ3) or SL(6,R) [10]), following directly from the
physical significance of the algebraic operators generat-
ing rigid or irrotational dynamical flows.

To calculate the low-energy spectrum of '92Pd, we
used a dynamical symmetry Hamiltonian, which is ex-
pressed along the reduction chain defining the microscop-

ic shell-model version of the BM model, and a residual
rotor part and vertical mixing term that mixes different
SU(3) and SO(6) multiplets within the relevant Sp(12,R)
irreducible collective space Op—0h[24]s of '2Pd. We
performed a simultaneous diagonalization of the model
Hamiltonian within the space of different SU(3) and
SO(6) irreps that belong to the SL(6,R) irrep vy =24 from
one side, and in the space of different ¢ ~ K values with-
in each SU(3) multiplet from another side. The relevant
Sp(12,R) and SL(6,R) irreducible shell-model representa-
tions have been determined using the proxy-SU(3)
scheme.

A good description of the excitation energies of the
lowest ground, y, and £ bands, including the strong odd-
even staggering pattern between the collective states of
the y band and some other energy-dependent quantities in
102Pd, is obtained. The low-energy intraband and interb-
and quadrupole dynamics, using the SL(6,R) infinitesim-
al generators of irrotational-flow (surface-wave) rota-
tions as quadrupole excitation operators, is reasonably
well described within the present proton-neutron symplet-
ic based shell-model approach without the use of an ef-
fective charge. We indicate that the description of the ex-
citation energies and ground-state intraband B(E2) trans-
ition strengths can be improved by including other com-
ponents of the nuclear interaction — for instance, the
second-order SO(6) and third-order SU,,(3) Casimir op-
erators. The findings of the present study support the
semiclassical interpretation of tidal wave introduced
some years ago [12, 13] for the description of the yrast
band for some vibrational and transitional nuclei and ex-
tend its irrotational-flow character to the excited y and
bands, because the same excitation operator is used. At
the same time, in contrast to the semiclassical approach
of Refs. [12, 13], the present microscopic shell-model
version of the BM model within the framework of the
PNSM is pure quantal in nature and can be used to prop-
erly describe the observed fermion dynamics in atomic
nuclei, exploiting the well-defined many-nucleon
quantum mechanics. Thus, the obtained results shed light
on the question of the existence and the microscopic
shell-model foundation of the irrotational-flow type quad-
rupole dynamics, which lies on the ground of the original
BM model of quantized vibrations and surface-wave rota-
tions in atomic nuclei.
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