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Abstract: Deep neural networks (DNNs) and auto differentiation have been widely used in computational physics

to solve variational problems. When a DNN is used to represent the wave function and solve quantum many-body

problems using variational optimization, various physical constraints have to be injected into the neural network by
construction to increase the data and learning efficiency. We build the unitary constraint to the variational wave
function using a monotonic neural network to represent the cumulative distribution function (CDF)

F(x) = ffw Y*dx’ . Using this constrained neural network to represent the variational wave function, we solve Sch-

rodinger equations using auto-differentiation and stochastic gradient descent (SGD) by minimizing the violation of

the trial wave function y(x) to the Schrodinger equation. For several classical problems in quantum mechanics, we

obtain their ground state wave function and energy with very low errors. The method developed in the present paper
may pave a new way for solving nuclear many-body problems in the future.
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I. INTRODUCTION

The universal approximation theorem of the deep
neural network (DNN) [1] makes it powerful for repres-
enting a variational function y = f(x,6) with trainable
parameters 6. In physics, this function can be used as
solution of many different partial differential equations
(PDEs) Lf =0, such as Maxwell equations in the electro-
magnetic field, Navier-Stokes equations in fluid dynam-
ics, Schrodinger equations in quantum mechanics, and
Einstein field equations for gravity. The traditional way
to solve this problem is to use physical models. These
models face great challenges in solving inverse problems
with complex geometric regions and high-dimensional
space. Unlike these models, the deep learning method de-
veloped in this study provides a new direction to solve
these problems. As the parameters of a DNN are initial-
ized with random numbers, the variational function
f(x,0) violates the PDEs, and the residuals 6 =|Lf| are
usually the optimization objectives that can be minim-
ized to the desired precision. In this way, many physical
problems [2] are naturally mapped into optimization

problems [3] that can be solved using the modern deep
learning libraries.

The main advantages of machine learning are that (1)
it directly establishes the function mapping between in-
put and output data, and (2) ordinary differential equa-
tions (ODEs) and PDEs can be transformed into vari-
ational problems that can be solved using optimization.
Machine learning can be helpful in finding low-dimen-
sional manifolds in a high-dimensional space, which is
crucial for the quantum many-body problem, which suf-
fers from the curse of dimensionality. The associated dis-
advantage is that it is at an early stage of development
and its applicability to computational physics has not
been fully tested.

With strong information encapsulation capability,
deep learning has been proved to be a powerful tool in
solving quantum many-body problems [4—8]. The most
typical application is to use the DNN to represent the
wave function of quantum many-body states for many-
electron systems [9]. In subsequent developments, artifi-
cial neural network (ANN) applications were extended to
prototypical spin lattice systems and quantum systems in

Received 1 January 2023; Accepted 17 March 2023; Published online 18 March 2023

* Supported by the National Natural Science Foundation of China (12035006, 12075098), the Natural Science Foundation of Hubei Province (2019CFB563), the
Hubei Province Department of Education (D20201108), Hubei Province Department of Science and Technology (2021BLB171)

" B-mail: lihl@wust.edu.cn (Corresponding author)
* E-mail: Igpang@ccnu.edu.cn (Corresponding author)

©2023 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese

Academy of Sciences and IOP Publishing Ltd

054104-1



Kai-Fang Pu, Han-Lin Li, Hong-Liang Lii ef al.

Chin. Phys. C 47, 054104 (2023)

a continuous space [10—12]. Recently, machine learning
has been used to deal with ab-initio problems [13—15].
The Feynman path integral [16] is another method for
solving quantum state problems. Modern generative mod-
els can represent a probability distribution with high com-
putational efficiency. A Fourier-flow generative model
has been proposed to simulate the Feynman propagator
and generate paths for quantum systems [17]. Further,
Ref. [18] proposed a Feynman path generator that can es-
timate the Euclidean propagator and the ground state
wave function with high accuracy.

PDEs usually have boundary and/or initial conditions.
In an early study, these initial and boundary conditions
were built into the neural network by construction, and
the training objective was to minimize the residual ¢
alone. This method uses hard constraints such that f(x,6)
satisfies the initial and boundary conditions automatic-
ally. It is thus quite data efficient. The recent physics in-
formed neural network [19— 21] uses soft constraints
where the violations to initial and boundary conditions
are also added to the training objective L = |Lf|+816pc|+
B2loicl.

Some variational functions should obey physical con-
straints. For example, in solving the Maxwell equations,
the magnetic field represented by the DNN should be di-
vergence free. To include this constraint, the paper "Lin-
early constrained neural network" proposes a DNN that
produces a vector field /f(x, v,2,0) whose curl VXA is di-
vergence free [22]. It is thus also possible to construct a
scalar field ¢(x,y,z,6) whose gradients (0.¢,0,¢,0.¢) are
curl free. Actually, a general method has been developed
to construct neural networks with linear constraints. In
solving the many-body Schrodinger equations, the many
fermion wave function should be anti-symmetric. Fer-
miNet and PauliNet use the Slater determinant to con-
struct DNNs that are anti-symmetric. [23] In DFT
[24-26] and molecular dynamics [26], the local chemical
environment usually has translational or rotational sym-
metry that is considered using a gauge equivalent neural
network [27]. In the lattice gauge field theory [28], gauge
equivariant normalizing flows are employed to sample
field configurations [29].

In the present work, we use a monotonic neural net-
work to represent the cumulative distribution function
ffoo f(x)dx’, whose first order derivative is the probabil-
ity density f(x) =y¢*(x)¥(x) that gives the ground state
wave function. The present paper demonstrates that a
neural network with physical constraints can be used as
efficient trial wave functions of Schrodinger equations.
Auto-diff helps to compute the required derivatives of the
trial function with respect to the input variables. In this
way, optimizing the violation of the trial function to
PDEs allows solving the PDEs with high accuracy. Com-
pared to previous methods, our method does not need to
calculate any numerical integrals in the whole calcula-

tion and the unitary constraint we impose on the vari-
ational wave function increases the data learning effi-
ciency. The improved algorithm greatly reduces the
amount of computation required to solve the same Sch-
rodinger equation. These advantages make our method
more suitable for dealing with many-body states, which
require a huge amount of computation.

II. METHODS

The traditional variational method for quantum mech-
anics [30, 31] usually uses a given function with un-
known parameters as a variational function, e.g., e™*"
with a as the unknown parameter. Different from the pre-
vious variational artificial neural network (VANN) ap-
plications [23, 32], we do not use the DNN to represent
the wave function directly; instead, we use the DNN to
represent the cumulative distribution function (CDF),
which is the integration of the probability density func-
tion on the spatial coordinate. The training objective is
thus to minimize the violation of the wave function y(x)
represented by the neural network to the Schrodinger
equation. Its relationship with the wave function is ex-
pressed as follows:

Fx) = / Y (x)dx’, (D

dF
w0 =/ 2, e

where F(x)is the CDF represented by a neural network
that is monotonic by construction. We decided to con-
strain the weights to make the algorithm data efficient.
The derivative dF/dx is calculated using auto differenti-
ation (auto-diff) [33], which is provided by the deep
learning libraries automatically, in analytical precision.
There are two advantages of using the CDF. First, the
wave function extracted from the CDF automatically sat-
isfies the normalization condition. Thus, there is no nu-
merical integral in the whole calculation. Second, the val-
ues of the CDF are between (0,1), a much smaller range
than that of the PDF, making the neural network much
easier to train under the same learning rate. In practice,
our training epochs are far fewer than those in the previ-
ous algorithm. Moreover, because we eliminate all the in-
tegrals, each epoch requires less computation than the
previous algorithms. Therefore, our algorithm can
achieve higher accuracy with less computation.

We use a feed forward neural network, or simply a
multi-layer perceptron, to represent the CDF. The input
of the neural network is the n-dimensional spatial co-
ordinates x, and the first layer of the DNN consists of
m =32 hidden neurons whose values are calculated by
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hy = o(xW) +by), where W, is the weight matrix with
nxm elements and b; is the bias vector with m values. o
is the activation function, which provides the neural net-
work with non-linear representation ability. To increase
the representation power, the values of neurons in the
first hidden layer are feed forward to the second hidden
layer with similar operations &, = o(hj W, +b;). One can
stack multiple hidden layers with one output neuron in
the last layer to represent the value of the CDF function.
The whole neural network can thus be thought of as one
variational function F(x,6) with 6 being all the trainable
parameters in the neural network.

To ensure that F(x,6) is monotonic, we add a non-
negative constraint to the weights W; of the neural net-
work. At the same time, the activation function should
also be monotonic. In principle, sigmoid, tanh, as well as
leaky relu functions can all be used to construct this
monotonic neural network. In practice, we use a sigmoid
activation function whose derivatives are also continuous.
This is important when the second order derivatives are
required in auto-diff. For example, if one uses a relu ac-
tivation function, the second order derivatives of the out-
put of the neural network to the input equal 0. The last
layer also uses a sigmoid activation function to ensure
that the output range is (0, 1).

The training objective is to find the ground state en-
ergy Ey and its corresponding wave function ¢y by min-
imizing the violation of the wave function ¢(x) to the fol-
lowing Schrodinger equation:

Hly) = Eoly), 3)

n* : Lo
where H = —2—V2 + V(x) is the Hamiltonian operator and
m
E, represents its smallest eigenvalue. The loss function is
thus set to be

L(0) = |(H — Eo)l) + |F (Xmin)| + |F (Xmax) = 1I,  (4)

where 6 represents all the trainable parameters in the
monotonic neural network, V2|y) is computed by the
neural network through auto-diff, and E is another train-
able parameter initialized with a constant number, 0.0.
Two additional loss terms are added to take into account
the boundary condition of the CDF. We use it to limit the
range of values of the CDF, which ensures that the wave-
function satisfies the normalization condition. In previ-
ous VANN applications, this term was written as
<yYlHly > | <yly >. We replace the numerical integra-
tion of the denominator with soft constraints, which sim-
plifies the calculation.

Before optimization, the weight values of the neural
network parameters are usually initialized randomly or

through the Xavier scheme [34]. In our problem, we ob-
serve that the scheme of parameter initialization has little
influence on the training process and the result of vari-
ational optimization.

We attempt to eliminate all the numerical integrals in
the whole calculation because, in neural network calcula-
tions, the differential is easier to calculate than the integ-
ral. To calculate the integral, we have to use numerical
approximation methods such as Monte Carlo sampling,
which will certainly increase the amount of computation
and may affect the accuracy. In practice, we found that
we had to subtract the energy term if we did not want to
include the integral. To find the ground state energy and
wave function, we add another loss term e%%!£ The ba-
sic logic is to decrease Ey during the optimization of the
overall loss. The function form of this loss term is de-
signed to produce proper negative gradients at different
stages of training. First, the gradients should be suffi-
ciently large to make it converge fast when E; is much
larger than the ground state energy. Second, the gradients
should be small enough to avoid interfering with the op-
timization of other parts of overall loss when Ej is suffi-
ciently close to the true value. Last but not least, this loss
term must monotonously increase with Ey throughout the
definition domain. In principle, Ey can be smaller than
the analytical ground state energy; however, in that case,
the residual of the Schrodinger equation increases faster
than this term because of the coefficient 0.001. After
trained, the value of Ej approaches the exact value of the
ground state energy.

We tested the performance of the DNN Schrodinger
equation solver on three classical quantum mechanical
problems. The first problem is the harmonic oscillator
problem [35]. The harmonic oscillator is used to approx-
imate, for example, the molecular vibration, lattice vibra-
tion, and radiation field vibration around a steady point.
All of these problems can be regarded as many independ-
ent harmonic oscillators whose potential in the Hamilto-
nian can be written as

V= %mwzxz, 5)

where m is the mass of the oscillator, w is its angular fre-
quency, and x is its deviation from equilibrium position.

The second problem is to solve the Schrodinger equa-
tion with the Woods-Saxon potential [36], which is
widely used in nuclear physics to represent the charge
distributions of the nucleus, as follows:

-1
V=— (6)
l+e «

where qy is related to the thickness of the surface layer, in
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which the potential drops from the outside to the inside of
the nucleus, and Ry is the average radius of the nucleus at
which the average interaction occurs.

The third potential is an infinitely high potential well
with a width of 2/,

oo, |x|>1
V= (7
0, |xl<l

For the sake of brevity, the parameters in Hamiltoni-
an use the following values:

hi=m=w=1, Rp=6.2, ap=0.1, [=4. 8)

Different from previous studies that solve Sch-
rodinger equations using supervised learning, our meth-
od is close to unsupervised learning, where both Ey and
Yo are learned through optimization. The input to the
neural network is a list of shuffled coordinates sampled
from the domain. Using these coordinates, we compute
the loss functions and minimize the violation of E, and
Yo to the Schrodinger equation, as well as e%%!%  In
principle, we can use the Markov chain Monte Carlo
(MCMC) method [37] to sample coordinates with the
learned wave function or use active learning to generate
coordinates that violate Schrodinger equations more with
the currently learned network to speed up the training
process. In practice, for these simple problems, the wave
function is usually very close to the exact wave function
after training the DNN for 2000 iterations. We generally
train 10000 iterations with a very small learning rate for
the last 1000 iterations.

We use tensorflow [38] to construct the DNN, to
compute the auto-diff dF/dx as well as V?y, and to up-
date the network parameters. We use the Adam al-
gorithm [39], which adds the momentum mechanism and
adaptive learning rate to the simple stochastic gradient
descent 6,1 =6, — lr% S % The relevant parameters
in the Adam algorithm are set to B8; =0.9, 8, =0.999,
€=10"7. To speed up the training process, we use a
learning rate scheduler to adjust the learning rate and
make it vary in the 1072 — 10 3range. A large learning rate
at an early stage makes the function converge faster at the
beginning, and a small learning rate at a late time makes
the training process smooth.

To quantify the difference between the true wave
function e and the wave function learned by the DNN
YpNN, We introduce the partial-wave fidelity K as fol-
lows:

_ < YiruelDNN >2
< Ytrueltrue >< YDNNIWDNN >

©

The closer K is to one, the closer is the result of the
DNN to the exact wave function.

III. RESULTS

For the harmonic oscillator potential used in the
present work, the analytical ground state energy is 0.5%iw.
After 1500 iterations of training, the ground state energy
from DNN is Ej=0.50038%w, whose relative error is
within 0.06%. In the last stage of 10000 iterations, the er-
ror can be controlled below 0.002%.

The partial-wave fidelity K is approximately 0.997993
using three hidden layers with 32 units (neurons) per lay-
er. To study the influence of the number of variational
parameters on the training results, we computed K using
different numbers of hidden layers and numbers of units
per layer. The results are shown below.

As presented in Table 1, the highest fidelity is
achieved using 4 hidden layers with 16 hidden neurons
per layer, with K =0.9999967. For this simple problem,
the DNN achieves a very low error in fidelity even with
only two hidden layers and four units per layer. The per-
formance increases with the number of variational para-
meters, approaching the exact wave function. However,
the performance of the DNN saturates or even decreases
if there are too many variational parameters.

To further visualize the difference between the result
of the DNN and the exact solution, we compare the CDF
in Fig. 1.

Table 1. Fidelities of VANN results; the first row repres-
ents the number of hidden layers, and the first column repres-
ents the number of units in each layer.

NunitNayer 1 2 3 4
4 0.9995717 0.9999767 0.9999705 0.9999618
8 0.9999416 0.9999797 0.9999910 0.9999932
16 0.9999861 0.9999923 0.9999936 0.9999967
32 0.9999789 0.9999909 0.9999896 0.9999922
64 0.9999744 0.9999746 0.9999903 0.9999941
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Fig. 1. (color online) Cumulative distribution equation as a

function of position in the harmonic oscillator problem.
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Fig. 2.  (color online) Ground state wave function (top
panel), first derivative (central), and second derivative (bot-
tom) as a function of position in the harmonic oscillator prob-
lem.

Using Eq. (2), we compute y(x) = VdF/dx and com-
pare the v&(/jave functipn ¢(x) and its first and second de-

rivatives i and — with the analytical results. This

provides a )ccletailed gomparison that shows the power of
the variational function represented by the DNN.

As shown in Fig. 1, the difference between the DNN
results and the ground truth is within an error range of
0.0001. The error range of the ground state wave func-
tion can be controlled within 0.0002, as shown in Fig. 2.
In addition, the accuracies of the learned first and second
order derivatives obtained through variational optimiza-
tion are also very high, which means that this method is
not only accurate, but also captures the true physics in-
stead of finding an approximation function for the ground
state wave function.

The same network is used to solve Schrodinger equa-
tions with the Woods-Saxon potential and the infinitely
high potential well. No modification is made to the hy-
perparameters other than the potential part in the
Hamiltonian. The comparisons between the learned
ground state wave functions and the true values are

— |¥(x)) truth
|¥(x)) network

Fig. 3.
Woods-Saxon potential energy.
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Fig. 4. (color online) Ground state wave function in the in-

finitely high potential well.

shown in Fig. 3 and Fig. 4. The result shows that the
ground state wave functions obtained from the DNN CDF
are also in excellent agreement with the exact solution.
The error range of the Woods-Saxon potential's ground
state wave function can be controlled within 0.0002. As
shown in Fig. 4, the performance of the network on the
infinitely high potential well is relatively poor, and the
range of error is expanded to 0.02, which is much worse
than that in the harmonic oscillator potential and Woods-
Saxon potential. This is also reflected in the calculation
of the ground state energy and partial-wave fidelity K.
The ground state energy calculated by the DNN for the
Woods-Saxon potential problem is —0.97382, also within
an error of 0.002% to the exact result —0.97385, and
K =0.999964, similar to that for the harmonic oscillator
potential. However, for the potential well problem, the
DNN Ej =0.07787, whose relative error to the accurate
result of 0.07710 is approximately 1%, and K=
0.9977475, also less than the average level of the first
two potentials. It reminds us that this DNN might not per-
form good at dealing with potentials with discontinuities,
like the infinitely high potential well, whose potential en-
ergy discontinuously changes from zero to infinity at the
boundary. We think that this is due to the fact that the soft
constraint cannot handle the infinite potential energy at
the boundary well, so the probability density at the
boundary is not 0.

IV. CONCLUSIONS
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In the present study, we used a physics-based neural
network to solve Schrodinger equations numerically. We
designed a monotonic neural network to represent the
CDF of the ground state wave function. In this way, the
wave function represented by the DNN satisfies the nor-
malization condition by design. The variational optimiza-
tion is reduced to an optimization problem by minimiz-
ing the violation of the trial wave function and trial
ground state energy Ej to Schrodinger equations. The
method is used to solve Schrodinger equations with three
different potentials, the harmonic oscillator, the Woods-
Saxon potential, and the infinitely high potential well, all
with a small relative error.

Compared to traditional variational methods in solv-
ing quantum mechanical problems, the trial wave func-
tion represented by the DNN does not have fixed func-
tion forms before training. The training objective is dif-
(WIHW)

Yl)

al integration is required for both the numerator and de-
nominator. In our case, the objective is to minimize the
violation to the Schrodinger equation on sampled spatial
coordinates. As the neural network is constrained, the tri-
al wave function is normalized by construction. Our
method is also different from the previous Schrodinger
equation solver using supervised learning, where ground
state energies from numerical solutions are needed to
train the neural network. In another DNN Schrodinger
solver [30, 31], the initial values of the network paramet-
ers greatly affect the optimization results. To avoid strong
fluctuations, they provide a trial wave function whose
form is close to the exact solution. The disadvantage of
the previous algorithms is that they can only solve prob-
lems in which the form of the exact solution of the equa-

ferent from the traditional Ej = , where numeric-

tion is known. Our algorithm can directly ignore the pre-
training process, so we do not need to know any informa-
tion of the exact solution before training. This is more
universal and provides the possibility to solve problems
that have never been dealt with before. In addition, we
observe that our DNN can approximate the ground state
wave function with fewer trainable parameters.
Moreover, the physical constraints constructed in the
neural network make the current method quite data effi-
cient. Thus, we can achieve higher accuracy with less
computation.

The current method can be improved in several ways.
First, the CDF works for wave functions in high dimen-
sional space as long as the n-dim spatial coordinates are
flattened. Second, the spatial coordinates used for train-
ing can be sampled using the learned wave function or
through active learning, to increase the training effi-
ciency. Third, the anti-symmetric constraints of the wave
function should be considered for many fermion systems.
Although further efforts have to be done to improve the
current method, it shows good properties in solving clas-
sical quantum mechanical problems. The next step is to
solve the ground state energy and wave functions of the
deuteron. It also paves a new way in solving many nucle-
on problems.
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