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Phantom cosmologies from the simplest parameterization of the DE model
using observational data in a BI type universe
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Abstract: To scrutinize the nature of dark energy, many equations of state have been proposed. In this context, we

examine the simplest parameterization of the equation of state parameter of dark energy in an anisotropic Bianchi

type I universe compared with the ACDM model. Using different combinations of data samples, including Pantheon
and Pantheon + H(z), alongside applying the minimization of the y? function of the distance modulus of data

samples, we obtain the constrained values of cosmographic parameters in the parameterization of the dark energy
scenario. One condition of the phantom barrier crossing is acquired. Several physical properties of the universe are
discussed by considering the anisotropy effect and different observational data points. One should note that the de-
ductions of the cosmological parameter verify recent observational data.
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I. INTRODUCTIONS

The recent acceleration of the expansion of the uni-
verse is entirely supported by different observations [1,
2]. This phenomenon is supported by the increase in ob-
servational evidence such as cosmic microwave back-
ground (CMB) anisotropies [3—6], baryon acoustic oscil-
lation (BAO) [7, 8], Hubble parameters derived from
passively evolving galaxies [9, 10], and Einstein radius
measurements of strong lensing systems [11, 12]. The ex-
planation behind the late-time acceleration of universe
expansion is one of the most important topics in cosmo-
logy and is completely supported by different observa-
tions. It requires the assumption of an effectively perfect
fluid that violates several energy conditions, known as
dark energy (DE) [13, 14]. To achieve acceleration, the
universe should be dominated by exotic fluid with negat-
ive pressure. The cosmological constant A, in which the
equation of state (EoS) parameter is equal to —1, is the
most likely possibility for DE. A model of the acceler-
ated expansion of the universe is constructed assuming
the cosmological constant and cold dark matter (CDM) in
the context of standard ACDM cosmology. This model
confirms the cosmological observations and suffers from

serious problems of cosmic coincidence and fine tuning
[15, 16]. Other types of cosmological constants based on
DE are scalar fields, such as the quintessence field, modi-
fied gravity, and phantom DE [17—-19].

The presence of dynamic DE is a viable alternative to
the cosmological constant that is constrained by observa-
tional data [20—22]. The phenomenological approach to
this issue is expressed by introducing the EoS w(¢), which
is variable with respect to time and redshift (z). The EoS
parameter describes the underlying scalar field and its rel-
evant dynamics. Functional forms of w(z;wg,w;) in-
volving a small number of parameters are the infrastruc-
ture behind variations in the EoS parameter w(z). Numer-
ous such parameterizations have been proposed in literat-
ure, such as Chevallier-Polarski-Linder (CPL) parameter-
ization [23], the Jassal-Bagla-Padmanabhan (JBP) model
[24, 25], the Barboza-Alcaniz (BA) model [26, 27], and
the logarithmic model [28]. The values of the parameters
(wo,w1) with the best fit of observational data are
provided for each model.

The idea that the geometry of the universe at the end
of the inflationary era is homogeneous and isotropic is
supported by several studies. The Friedman-Robertson-
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Walker (FRW) model plays an important role in this peri-
od [29]. Deficiencies in the CMB reveal an anisotropic
phase that then transforms into an isotropic phase. These
deficiencies are the result of quantum fluctuations in the
inflation period. Thus, anisotropy will be found behind
the evolving process. Anisotropy and spatial homogen-
eity in cosmology are interesting subjects for cosmolo-
gists. Some important applications of DE models in the
scope of anisotropic Bianchi space-times are given in
Refs. [29—39]. Among the Bianchi type models, the Bian-
chi type I (BI) cosmological model has received the most
attention owing to its fundamental properties. It has more
degrees of freedom characterized by lie groups. The BI
model recovers isotropy as special cases and permits a
small amount of anisotropy at some instant of cosmic
time. In recent years, many researchers have constructed
interesting cosmological models in the presence of DE
within the background of anisotropic Bianchi space-
times. Recently, Hossienkhani et al. constructed the BI
model with interacting holographic and new agegraphic
scalar field models of DE [40]. Some useful applications
of Bianchi type models compatible with astrophysical ob-
servations are given in Refs. [41—45]. The observational
datasets include the latest Pantheon sample [46] of type Ia
supernovae (SNIa), estimations of the Hubble parameter
H(z) data, and their joint combination. The best fits for
the free parameters of the parameterization of the EoS
parameter (w(z)) in the BI model are applied using the
maximum likelihood estimation method and then com-
pared with those of the ACDM model. Using this para-
meterization with current datasets, we can test the gener-
ic evolution of the EoS of the acceleration mechanism.

In this paper, we consider the parameterization of the
EoS parameter and obtain an explicit solution to the Ein-
stein field equations in flat BI space-time. This paper is
organized as follows. In the next section, the theoretical
model and its basic equations in an anisotropic universe
are given. The data samples and characteristic > for each
are obtained in Section III. In Section IV, we present our
result for the constraint on the BI universe for parameter-
izations of the DE EoS. In the final section, we give the
conclusion and discussion.

II. MODEL AND BASIC EQUATIONS

In this study, we investigate a cosmological model in
the context of spatially homogeneous BI space-time,
which is given as follows:

ds? = d? — A2 (1)dx® — BX(1)dy* — C%(1)d2?, (1)

where A4, B, and C are the directional scale factors, which
are functions of the cosmic time ¢ alone. Thus, the aver-
age scale factor is given by a = (ABC)'/3. If we consider

the matter field to consist of dark matter (DM) and DE,
then the field equations in the BI model are given by

1 I
R,»J-—ERg,»j = @(Tij +T79), )

where 77} and T,.dje are the energy momentum tensor for

. 1.
DM and DE, respectively, and M3 = 3G S the reduced
T

Planck mass.
The energy conservation equation reads as

(Th+T).;=0. (3)

Equation (3) leads to

pm +pde + 3I—Ipm + 3H(1 + U)de)Pde = 0, (4)

where p,, and pq. are the energy density of DM and DE,
respectively, wge = pde/pde is the EoS parameter of DE,
the over dot denotes derivatives with respect to time (¢),
and H is the mean Hubble function, defined as H = a/a,
with a as the average scale factor. Now, the mean Hubble
parameter in BI space-time is given by

H—l(H+H+H)—1<A+B+C> (5)
TR E s \AT B )
where H; = A/A, H, = B/B, and H; = C/C are directional

Hubble parameters. The scalar expansion and shear scal-
ar can be defined as

. A B C
O=u;=—+—-+—, 6
“TATBTC ©)

where o = ug;j —iguj — 1Ghi_,» is the shear tensor,
h = g;j—uu; is the projection tensor, and u; = (1,0,0,0) is
the four-velocity in the comoving coordinates. In the co-
moving coordinate system, considering Egs. (5)—(7), the
field in Eq. (2) for metric (1) is written as follows
[47-49]:

1
3H? =0 = 5 (o + pac), (8)
p

115104-2



Phantom cosmologies from the simplest parametrization of DE model using observational...

Chin. Phys. C 47, 115104 (2023)

. 1
2H+3H>+072 = —W(Pdewde) 9
P

Considering the particular case o =0 (implying A(r) —
B(t) — C(¢) in (7)), A(?) = B(t) = C(¢) = a(t), the field equa-
tion is re-obtained in the framework of the flat FRW met-
ric. Now, by introducing the density parameters Q; for
matter, DE, and anisotropy of the universe, we obtain
Q = Pm — Pde - Lz
"T3MAHR R T 3MRHR T T 3HR

(10)

Note that the continuity equation for anisotropy can be
written as

G +3Ho =0, (11)
which in turn gives

o=09a, (12)

where o is the constant of integration. This shows that
for smaller a, the shear scalar can increase faster and for
large quantities, leans to zero. This indicates that at a late
time, the universe can seem isotropic like. Because the
stiff or Zeldovich fluid is included in the base ACDM
model, the shear scalar o> contributes to the BI equation
as a stiff fluid p,- o« a=®, described by the EoS of the form
ws = 1. Moreover, the observations of redshift survey
place the limit as o/H < 0.3 in the neighborhood of our
present day galaxy. Collins et al. [50] concluded that for
spatially homogeneous space-time, the normal congru-
ence to homogeneous expansion follows the above condi-
tion, where o-/H is constant.

Owing to the lack of complete knowledge on DE, one
way to analyze models on the other side of the cosmolo-
gical constant is to parameterize the EoS parameter w(z).
To do this, we consider the simplest parameterization of
the EoS parameter of DE, given by [51, 52]

- _wo
w(z) = T4z’ (13)

where wgy denotes the present value of the EoS parameter
of DE. The main reason for considering the parameteriza-
tion of w(z) in the form of Eq. (13) is that at z =0, it gives
w(0) = wy and obtains (z — o), w(co) ~0 at early times,
which is eventually true when modeling the universe. The
best fit value of wy to gold SNIa, SDSS, and WMAP
datasets is wg=—1.1 [51]. Hence, the parameter favors
DE of phantom origin. From the energy conservation law
(4), pm +3H(om + pm) = 0 holds for barotropic matter. For
the dust filled current universe "p,, = 0" and using the re-

lation 1+z=1/a, we get p,, = p, (1 +2)°. The conserva-
tion law for the DE model is pge +3H(1 + wge(2))pde = 0.
Therefore, the DE density pq. is written as

M+ ,
DOde = PoEXP {3/ ( I (/ )> dz} ) (14)
0 +Z

where w(z’) is that given by Eq. (13). From Eq. (14), we
can deduce that the evolution of the DE component is
highly dependent on the form of its EoS parameter w(z’).
Combining Eqs. (13) and (14), the DE density is given as

3wpz
pee = po(1+2)* exp (l—fz) . (15)

For z> 1, we see that pg. ~ po(1 +2)°e** and pge — oo
when z — —1. Now, substituting p,,, p¢., and o into Eq.
(10), we get

H, 2
Qy =Q (1+2)° <—°) ,

H
3w z) <H0>2
_ 3 0
Qe =Qge,(1+2) eXp(1+Z )
Ho\?
Q, =0, (1 6(—) , 16
,(1+2) T (16)

where Hj is the current Hubble parameter, Q,, =pu,/
3M§H(2) is the density parameter for the matter content,
Qqe, = pae,/3M2H] is the density parameter for DE, and
Q,, = 03/3H} is the density parameter for the anisotropy
of the present universe. Using Egs. (9), (10), and (16)
leads to

H(2) =H3 | Qu, (1 +2)° + Q,, (1 +2)°
o (17)

+(1 _an _Q(Tu)(l +Z)3eli+z .

The term Q,, (1 +2)° is the fastest growing term in the
average expansion rate as it increases with increasing av-
erage redshift z. Notice that the ACDM model is re-
covered for wo=0. We also note that Q, +Qu, =
1-Q,,. This states that if the shear tensor tends toward
zero, the sum of the energy density parameters ap-
proaches 1 at late times.

III. OBSERVATIONAL CONSTRAINTS

The property of ACDM and parameterization of the
EoS of the DE model is investigated using the best fit
value for the model parameters Q,,,, Q,, wo, and M in an
anisotropic universe. In what follows, we describe the
database used.
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A. Pantheon sample

A Pantheon sample with a set of the latest data points
for the apparent magnitude of SNIa in the range 0.01 <
7<2.26 is used as one of two data point samples in this
study [46]. This sample includes 279 spectroscopically
confirmed SNIa discovered by the Pan-STARRS1(PS1)
Medium Deep Survey [46, 53], Sloan Digital Sky Survey
(SDSS) [54, 55], and Supernova Legacy Survey (SNLS)
[56, 57]. We compute the residuals Ay and minimize the
quantity

Xin = Aut.Cov ! Ay, (18)

where Au = p°® —u™, Cov is the covariance matrix, u°"
is taken from the compilation presented in [46], and the
u™ distance modulus of the luminosity distance is estim-
ated, which is defined as

u(zi) = M +5logy, {(1 +z)H0/ dz'H*I(Z’)} +25,  (19)
0

where M represents the absolute B-band magnitude of a
fiducial SNIa, and H(z) contains the free parameters of
Eq. (17). From Eq. (19), we can easily see a degeneracy
between the parameters M and H,, which is considered
constant in the context of a DE model H(z). Therefore, if
we take M to be a member of the set of nuisance paramet-
ers characterizing the SN luminosities, the parameteriza-
tion of the EoS of the DE model will have, at most, only
three parameters: Q,,,, Q,, and wy. For consistency with
Refs. [46, 58], we set Hy =70 km s~ 'Mpc~!.

B. Observational Hubble data (H(z))

The Hubble dataset with 52 data points in the redshift
range 0 <z <2.36 is extracted in this study (see Table 1).
Out of the 52 Hubble data points, 30 points are measured
via the method of differential age (DA). BAO and anoth-
er method are applied to extract the remaining 22 points.
Table 1 shows the 52 H(z) points used in this paper and
Refs. [59—61]. To find the best fit value of the paramet-
ers of the obtained models, we use the technique of a y2-
test defined by the following statistical formula:

i [(H)n(2) — (Hyos (22

20)
2 (
=1 O (H)n()

2
XH@) =

where (H;)ops and (H;)y, are the observed and predicted
values of the Hubble parameter, respectively.

C. Statistical analysis

In our examination, the different measurements of
SNIa and H(z) are merged by adding their corresponding

Table 1. Hubble parameter H(z) with redshift and errors o7.
z H@)  Thong z H@) Ty
0 73.24 1.74 0.07 69 19.6
0.1 69 12 0.12 68.6 26.2
0.17 83 8 0.1791 75 4
0.1993 75 5 0.2 72.9 29.6
0.24 79.69 2.65 0.27 77 14
0.28 88.8 36.6 0.3 81.7 6.22
0.31 78.17 4.74 0.35 82.7 8.4
0.3519 83 14 0.36 79.93 3.39
0.38 81.5 1.9 0.3802 83 13.5
0.4 95 17 0.4004 77 10.2
0.4247 87.1 11.2 0.43 86.45 3.68
0.44 82.6 7.8 0.4497 92.8 12.9
0.47 89 34 0.4783 80.9 9
0.48 97 60 0.51 90.4 1.9
0.52 94.35 2.65 0.56 93.33 2.32
0.57 96.8 3.4 0.59 98.48 3.19
0.5929 104 13 0.6 87.9 6.1
0.61 97.3 2.1 0.64 98.82 2.99
0.6797 92 8 0.73 97.3 7
0.7812 105 12 0.8754 125 17
0.88 90 40 0.9 117 23
1.037 154 20 1.3 168 17
1.363 160 33.6 1.43 177 18
153 140 14 1.75 202 40
1.965 186.5 50.4 2.33 224 8
2.34 222 7 2.36 226 8

x? functions. They are not all dependent on each other
and explore different cosmic periods. We express the
combination of all the data as

2 2 2
XTotal = X'SNIa +XH(1)7 (21)

where each function is defined as explained in previous
subsections.

IV. NUMERICAL RESULTS

Now, we are ready to apply the maximum likelihood
technique [62] using the effects of anisotropy on the
aforementioned DE models. A cosmological model with
a standard DM and DE component, considering the para-
meterization Eq. (13) with H(z) defined in (17), is con-
sidered. A statistical method based on MLE is developed
to minimize the y? estimator with reduced chi-squared,
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X2q =X/ (d.o0.f.). In addition to the MLE technique, a
prior technique on the Hubble parameter tension Hy =70
km s~!Mpc~! is established, as cited in Refs. [46, 58]. We
depict two dimensional contours in the 1o and 20" con-
fidence regions by bounding our model with Pantheon
and Pantheon+H(z) data, which is shown in Figs. 1 and 2.
The results of this analysis are summarized in Table 2.

Considering the standard ACDM scenario with the
Pantheon sample, we obtain Q,, =0.229+0.038 and
M =-19.298 £0.008 (see the first row of Table 2). Given
the SNLS sample for the ACDM model, Guy et al. ob-
tained Q,, =0.215 and M =-19.21, which are compat-
ible with current observational data [63]. By combining
the Pantheon data with the H(z) data for ACDM in the BI
model, we obtain Q, =0.286+0.009 and M =-19.291
+0.005. From Table 2, we find that the smallest value of
the reduced x2, belongs to the parameterization of the
DE model with the Pantheon+H(z) data.

Considering the fit results of the parameterization of
the DE model with the Pantheon and Pantheon+H(z)
datasets, it is realized that for the parameterization of the
DE model, the value of the best fit obtained for Q,, is ap-
proximately equal to Q,, =0.181 (for Pantheon+H(z)
Q,,, = 0.285). Then, the fit value of Q,, in the parameter-
ization of the DE model in the BI model is confirmed
with the ACDM model using the data combinations. The
nuisance parameter is constrained as M =-19.306,
—19.312 with the Pantheon and combined H(z)+Pantheon
data, which is in agreement with the results of Ref. [46],
where anisotropy cosmology was not considered. With
regard to the SNIa and H(z) data in our analysis, we ap-
ply the constraint Q,, < 1073. A comparison with the dir-
ect-model independent observational data shows that the
method used is appropriate [35, 44].

Having obtained the SNIla data, we have wg=
—1.013+0.339 at the 10’ confidence level. By combin-
ing the H(z) and Pantheon datasets, the parameterization
of the DE model approach leads to wp = —1.205+0.165 at
the 107 confidence level, as shown in Fig. 2. We derive
-1.25 <wy < -1.16 at the 95% confidence level, which
indicates that DE completely varies in the phantom re-

Table 2.
(right) in an anisotropic universe for Hy =70 km s~'Mpc~! prior.

gion. Now, we compare this result with the best fit of the
wo value obtained with the SNIa 'gold set'+SDSS+
WAMP, wo=-1.1£0.2 [51] and the 159 SNIa data,
wo = —1.15%020 [64]. We find that the values of wy, when
combined, are consistent with observational values.

In the following, we discuss the improvement in the
precision of cosmological parameters with the addition of
the H(z) data. For the ACDM model, the precision of Q,,,
from the data of Pantheon and PantheontH(z) are pro-
moted from 16.6% and 3.15%, respectively. In the preci-
sion of Q. , the data of Pantheon and Pantheon+H(z) are
improved from 68.2% and 52.6%, respectively. The pre-
cision of M is improved by 0.04% and 0.02% for the Pan-
theon and Pantheon+H(z) data, respectively. We can see a
more precise nature of the Pantheon+H(z) data compared
to the Pantheon data alone. For the parameterization of
DE in the BI model, in the current combined observa-
tions (Pantheon+H(z)), the constraints on Q,, , Qs,, M,
and wy are improved by 19.3%, 49.7%, 0.04%, and
13.7%, respectively. In addition, upon closer examina-
tion of the posteriors of Figs. 1 and 2, it is evident that the
parameters from the dataset combinations that include
Pantheon+H(z) exhibit tighter constraints, with the cos-
mological parameter showing notably improved preci-
sion. Therefore, we conclude that the Pantheon data do
not help to improve the constraints on the parameteriza-
tion of DE in an anisotropic universe; however, they
would significantly improve the constraints on the para-
meterization of DE using the H(z) combination.

Because of the different numbers of parameters, a
model with more parameters is more favorable with a
lesser value of y?. Therefore, we use the Akaike informa-
tion criterion (AIC) to make a fair model comparison.
The selection function of the AIC model can be written as
[65, 66]

2k(k+1)

AIC = =21 2k + ———,
B

(22)

where L.« and k are the maximum likelihood and num-
ber of parameters, respectively. For Gaussian errors,

Best fit values of the cosmological parameters for the ACDM (left) and parameterization of the DE model (w = wo/(1+2))

ACDM model Parameterization of the DE model
Parameters Pantheon data PantheontH(z) data Pantheon data PantheontH(z) data
Qg 0.229+0.038 0.286 +0.009 0.181+0.221 0.285+0.055
Qg 0.01098 +0.00749 —0.00078 +0.00041 0.00503 +0.01341 —0.00183 +0.00091
M —19.298 +0.008 —-19.291 +£0.005 —-19.306+0.012 —19.312+0.009
wo - - -1.013+0.339 —1.205+0.165
/\/fm-n 1007.02 1039.38 1006.14 1033.52
szed 0.963 0.947 0.964 0.943
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Fig. 1. (color online) One-dimensional posterior distributions and two-dimensional marginalized contours (1o’ and 2¢”) for the para-
meters Q,, Qu,, wo, and M in the parameterization of the DE model (w = wy/(1 +2)) using the Pantheon data for Hy =70 km s~'Mpc™!

prior.
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Fig. 2. (color online) One-dimensional posterior distributions and two-dimensional marginalized contours (1o’ and 2¢”) for the para-
meters Qu,, Qo,, wo, and M in the parameterization of the DE model (w=wy/(1+2)) using the Pantheont+H(z) data for
Ho =70km s~ 'Mpc™! prior.
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X2 =—2InLina. In the case of numerous data points
Niot, Wwe have AIC =~ —21n L, + 2k. In actuality, the relat-
ive values in various models are more applicable and
valuable, i.e., we have AAIC = Ay?. +2Ak. A model with
a lower AIC value is preferred. In comparison with a ref-
erence model, models with 0 < AAIC <2 have consider-
able support, models with 4 < AAIC <7 have signific-
antly less support, and models with AAIC > 10 have
mainly no support [65]. However, compared with the
base ACDM model with y? = 1007.02, the parameteriza-
tion of the DE model has Ay? = —0.88 and AAIC = 1.12,
indicating that the parameterization of DE is favored by
the Pantheon data. From a statistical point of view, the
parameterization of the DE model has Ay? = -5.86 and
AAIC =3.86 and is considerably less supported by the
Pantheon+H(z) data combination (see Table 3).

A distance modulus error plot of the Pantheon and
Pantheon+H(z) datasets with the parameterization of the
DE model is shown in Fig. 3. The derived model agrees
well with the Pantheon and Pantheont+H(z) data. It

Table 3. Minimum value of 2, AIC, and AAIC of the
ACDM and parameterization of DE (w = wy/(1 +z)) models in
an  anisotropic  universe Pantheon and

Pantheon+H(z) data.

using  the

closely resembles the behavior of the parameterization of
the DE model in BI cosmology.

The redshift evolution of the Hubble parameter H(z)is
reconstructed within the 107 confidence region in Fig. 4.
The points with bars show the experimental data abstrac-
ted in Table 1. It is clear that our model is best-suited to
the data when we perform a joint analysis of the two data-
sets. In all cases, we set Hy =70 km/s/Mpc [46, 58]. As
shown in this figure, the H(z) curve of the Pantheon data
deviates from the lo’ region at redshifts higher than
z~0.9.

Having been constrained by the different observa-
tions, Fig. 5 shows the EoS for the parameterization of
the DE model used at the 68% confidence level of the BI
universe. The evolution in the Pantheon sample (red)
moves close to w(z) = —1. Nevertheless, as it approaches
7 =0, the EoS approaches higher values toward w(z = 0) =
-1.016%03%. By combining the Pantheon with H(z) data
(blue), the EoS reaches a value of w(z=0)=-1.208+
0.17, which is located in the phantom region. This
scheme proposes a phantom crossing of the universe
around z = 0.206. In [67], the old SNIa data with the Gold
dataset were used to reconstruct w(z) and exhibited a
gentle preference for w(z) and the phantom evolution of
the universe [68]. The WMAP7 measurements give
w(z)=—-1.1£0.14 [69], and an analysis of the Union2
SNIa dataset gives w(z) =—1.035+0.95 [70]. Therefore,
the current observational data are still consistent with the
phantom model.

Figure 6 shows a similar graph for the posterior prob-
ability of the deceleration parameter ¢(z) at the 107 con-
fidence level. We can see a flip in the signature of the de-
celeration parameter, which exhibits a transition from the
decelerated phase to an accelerated phase; therefore, it is
essential for the formation of a not hindered structure of

Fit k X Aic AAIC
ACDM model
Pantheon 3 1007.02 1013.04 -
Pantheon+H(z) 3 1039.38 1045.4 -
w=wo/(1+2)
Pantheon 4 1006.14 1014.18 1.12
Pantheon+H(z) 4 1033.52 1041.56 3.86
5
3
0.‘0 - 0.‘2 - 0,‘4 — 0.‘6 ‘
Fig. 3.

z

(color online) Supernovae data with the Pantheon sample (gray points) and the best-fit curves of the modulus distance u as a

function of the redshift z [Eq. (19)] for the parameterization of the DE model in an anisotropic universe. Each color represents a differ-
ent dataset. The continuous (dashed) curves correspond to the Pantheon (Pantheon+H(z)) data.
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400/
| —— Pantheon

—— Pantheon+H(z)

300!

100!

Fig. 4.
based on the best fit values of the cosmographic parameters

(color online) Reconstructed Hubble parameter H(z)

for the parameterization of the DE model in an anisotropic
universe. Table 1 summarizes the experimental data behind
the points with bars. The red (blue) band shows the 107 con-
fidence region using the Pantheon (Pantheon+H(z)) data.

0.5

—— Pantheon

I —— Pantheon+H(z)
0.0r 1
-0.5/

S
3 I
-1.0

-1.5}

_2_07\"“\““\““\““\““\7
0.0 0.5 1.0 1.5 2.0 25

z

Fig. 5. (color online) Posterior probability Pr(wlz) of the DE
EoS w=wy/(1+7) against z. The red (blue) region represents
the 107(68%) confidence contour level using the Pantheon
(Pantheon+H(z)) data.

the universe. In the parameterization DE model approach,
the best suited value of the deceleration parameter within
the 1o’ confidence level is ¢9=-0.73+0.13 and
go =-0.80+0.08 when considering the Pantheon and
Pantheon+H(z) samples, respectively. We find that
adding H(z) to the Pantheon data leads to a smaller value
of the deceleration parameter compared to that of the
solely Pantheon sample. Recently, Shrivastava [52] ob-
tained an empirical value of gy as —0.61*03 with Pan-

theontH(z) in FRW cosmology. Furthermore, Ref. [71]

2+ —— Pantheon

—— Pantheon+H(z)

0.0 0.5 1.0 1.5 2.0
z

Fig. 6.
celeration parameter ¢(z) against z. The red (blue) region rep-

(color online) Posterior probability Pr(glz) of the de-

resents thelo’(68%) confidence contour level using the Pan-
theon (Pantheon+H(z)) data.

considered the parameterization of the deceleration para-
meter in modified symmetric teleparallel gravity (f(Q))
and obtained the current deceleration parameter value
qo = —0.832+0.091, which is close to our result.

Finally, we consider the isotropize model. The meas-
ure of anisotropy is described by o/H, expressing the
magnitude of the space-time shear per average expansion
rate. The criterion of late-time isotropization in an ex-
panding universe (H > 0) is the vanishing of the shear
o — 0, or alternatively, we can use the condition
o/H — 0 at t — co. Evolution of the anisotropy paramet-
er o/H with respect to the redshift z for the parameteriza-
tion of the DE model with the Pantheon and Pantheon+
H(z) datasets is presented in Fig. 7. However, as shown in
Fig. 7, the anisotropy is a non-zero value at the present
time, z =0, although it is approaching zero, i.e., the an-
isotropy will be very low after inflation. Then, at the end
of inflation, O(107°), which is closer to the bound ob-
tained by [72].

V. CONCLUDING REMARKS

In this study, Pantheon and H(z) datasets are used to
construct observational constraints on the parameteriza-
tion of DE (w(z) = wp/(1+7)) in the scope of an aniso-
tropic BI universe. We perform a perfect solution to Ein-
stein's field equations for the parameterization of the DE
case in BI space-time. Figures 1 and 2, in the circum-
stances under the cosmography approach, demonstrate
how the best-fit values of the confidence of the cosmo-
graphic parameters for different combinations of data
samples indicate regions up to 20~ uncertainties. Table 2
summarizes the major findings of the statistical analysis.
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Fig. 7.

4

(color online) Plot of the evolution of the anisotropy parameter versus redshift for the parameterization of the DE model in an

anisotropic universe. The figure is obtained using the best-fit values for the Pantheon and Pantheon+H(z) datasets presented in Table 2.

Alongside the parameterization DE case, we use one pri-
or for Hy from Refs. [46, 58]. We also check the statistic-
al performance of the parameterization model studied in
this paper by computing the x2. , x2,, and AIC estimat-
ors (see Table 3). We realize that with the evolving para-
meterization of DE, the Pantheon+H(z) sample seems to
be favored over the Pantheon sample. The Hubble para-
meter is reconstructed using the best fit value of the cos-
mographic parameters for DE parameterization. For the
parameterization of DE, we notice that the evolution of
the reconstructed H(z) in the Pantheon sample in compar-
ison with different data sample combinations has the
maximum deviation from the confidence region. By in-
corporating different combinations of data samples, our
results show that the best fit value of the deceleration
parameter gy changes in the range —0.88 to —0.72 and the
EoS parameter w(z=0) changes in the range —1.25 to
—1.16. Based on the results of Figs. 5 and 6, when we use

the Pantheon sample alone, the deceleration parameter g
and EoS parameter w(z=0) have the largest values,
whereas adding the H(z) data sample to Pantheon leads to
smaller values for go and w(z =0). We also obtain a gen-
eral condition for the phantom barrier crossing of the
parameterization of the Ig_E model in the BI universe. We
study the evolution of —, as shown in Fig. 7. We find
that the fraction of the anisotropy of the universe to shear
scalar can increase to O(107°) at the present time. Finally,
we deduce that the current Pantheon and H(z) data with
effects of anisotropy effectively constrain free values.
Additionally, our model confirms recent observations.

DATA AVAILABILITY

No data were used for the research described in the
article.
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