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Abstract: The microscopic mechanisms of the symmetry energy in nuclear matter are investigated in the frame-
work of the relativistic Brueckner-Hartree-Fock (RBHF) model with a high-precision realistic nuclear potential,
pvCDBonn A. The kinetic energy and potential contributions to symmetry energy are decomposed. They are expli-
citly expressed by the nucleon self-energies, which are obtained through projecting the G-matrices from the RBHF
model into the terms of Lorentz covariants. The nuclear medium effects on the nucleon self-energy and nucleon-nuc-
leon interaction in symmetry energy are discussed by comparing the results from the RBHF model and those from
Hartree-Fock and relativistic Hartree-Fock models. It is found that the nucleon self-energy including the nuclear me-
dium effect on the single-nucleon wave function provides a largely positive contribution to the symmetry energy,
while the nuclear medium effect on the nucleon-nucleon interaction, i.e., the effective G-matrices provides a negat-
ive contribution. The tensor force plays an essential role in the symmetry energy around the density. The scalar and
vector covariant amplitudes of nucleon-nucleon interaction dominate the potential component of the symmetry en-
ergy. Furthermore, the isoscalar and isovector terms in the optical potential are extracted from the RBHF model. The
isoscalar part is consistent with the results from the analysis of global optical potential, while the isovector one has

obvious differences at higher incident energy due to the relativistic effect.
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I. INTRODUCTION

The nuclear symmetry energy is originally generated
by the isospin degree of freedom of nucleon and the Pauli
principle, which plays a very important role in the neut-
ron-rich systems, such as the nuclei close to the neutron-
drip line and the compact star in the universe [1—5]. Re-
cently, a lot of observables about these extremely isospin
asymmetry objects have been obtained from nuclear and
astronomical facilities. The symmetry energy at nuclear
saturation density, Egn,(np) is well constrained from the
terrestrial experiments, such as the global nuclear masses
and excitation energies in the nuclide chart, nuclear res-
onances, heavy-ion collisions, and so on [6—12]. Its re-
cent constraint value iS FEgm(ng) =31.6+2.7 MeV
through comprehensively estimating these data [5].

In the aspect of theoretical investigations, the sym-
metry energy is determined by the isospin-dependent
terms in nucleon-nucleon interaction and the density of
nucleons. The effective nuclear potentials based on the
density functional theories are almost fixed by reprodu-

cing the ground-state properties of finite nuclei and em-
pirical saturation properties of infinite nuclear matter,
both of which are around the nuclear saturation density,
ny. When these nuclear many-body methods, such as the
Skyrme-Hartree-Fock (SHF) model [13, 14], relativistic
mean-field (RMF) model [15—18], relativistic point-coup-
ling model [19, 20], and relativistic Hartree-Fock (RHF)
model [18, 21, 22] are extrapolated to the high-density re-
gion, the symmetry energy presents distinct ambiguity
due to the nonlinear density-dependent terms [23—25].
Meanwhile, the ab initio methods, such as the variational
chain method [26], many-body perturbation method [27],
Brueckner-Hartree-Fock (BHF) model [28], and relativ-
istic Brueckner-Hartree-Fock (RBHF) model [29—32] can
substantially reduce such uncertainty in symmetry en-
ergy with realistic nuclear potentials. Meanwhile, the
symmetry energy and its slope were also studied in detail
through the transport, optical potential, Glauber, and the
polynomial parameterization models with various experi-
mental constraints [33—36].

Moreover, many recent works attempted to explore
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the various microscopic mechanisms of the symmetry en-
ergy. It was found that the symmetry energy and its slope
at nuclear saturation density are mainly contributed from
the tensor terms of nuclear potential [37, 38]. The three-
body force generates a strong repulsive component to the
symmetry energy at high densities [39, 40]. The short-
range correlations due to the strong repulsion core of nuc-
lear force may also influence the kinetic and potential
constitutions of the symmetry energy [41—43]. The sym-
metry energy can be decomposed into the nucleon self-
energies with scalar and vector forms based on the
Hugenholtz —Van Hove (HvH) theorem [44, 45]. The
roles of meson's Fock terms in symmetry energy were
also discussed in the RHF model [46—49]. When the
density-dependent RHF parameter sets, which were pro-
duced by the ground-state properties of finite nuclei, were
used [46—48], it was found that the Fock term can en-
hance the symmetry energy compared to the results from
the RMF model. Otherwise, when the parameter sets
were obtained by fitting the nuclear saturation properties,
Miyatsu et al. concluded that the RHF model suppressed
the symmetry energy and its slope at high-density re-
gions [49].

In the past few years, several important improve-
ments to the RBHF method were made. The full RBHF
equations were solved for finite nuclei in a Dirac-Woods-
Saxon basis and no free parameters were introduced to
calculate the ground-state properties of finite nuclei and
neutron drops [50—54]. The nuclear matter and neutron
star were investigated in the RBHF model without the av-
erage momentum approximation [55, 56]. Furthermore,
the negative-energy states were included in the Dirac
space to reduce the uncertainties of the single-particle po-
tential of nuclear matter [57].

In this work, we discuss the microscopic mechanism
of symmetry energy from the opinions of nuclear medi-
um effects and Lorentz covariant amplitudes of nuclear
potential by comparing the results from the Hartree-Fock
(HF), RHF, and RBHF models. The high-precision nucle-
on-nucleon interaction, pvCDBonn potential, will be ad-
opted to decrease the model parameter dependence. Fi-
nally, the lowest-order isoscalar and isovector compon-
ents of optical potential will be extracted from the RBHF
model.

II. THE SYMMETRY ENERGY IN RELATIVIST-
IC BRUECKNER-HARTREE-FOCK MODEL

The relativistic dynamics of a nucleon in the infinite
nuclear matter are described by the following Dirac equa-
tion [32]:

()’”kp—Mr—Zr)M(k, 5) =0, (1)

where k* represents the four-momentum of nucleon con-

sisting of energy and momentum. 7 and s indicate its
isospin and spin degrees of freedom, respectively. Be-
cause of the translation and rotation invariances of nucle-
ar matter, the nucleon self-energy, X, is written as

2 =3 -2+ k-yE). )

Conventionally, the effective nucleon mass and mo-
mentum are defined by

. Mo+X3
TTol4ny’
ke +f
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Therefore, the Dirac equation in a nuclear medium can be
rewritten as

(@ k+BMu(k,s) = Ex(k)u-(k, s), 4)

where Ei(k) = k*+M:* is the effective single-nucleon
energy. The solution to the above Dirac equation is a
plane wave and is expressed as a spinor form with a spin
wave function, yy,

1
ok Xs- (5)
E;+M;

E;+M;

u(k,s) = e

The magnitudes of nucleon self-energy are determ-
ined by the nucleon-nucleon interaction in nuclear medi-
um, G, within the RBHF model, which is obtained by
solving the relativistic Bethe-Brueckner-Goldstone equa-
tion [32, 58, 59]. There are three available schemes to ex-
tract the nucleon self-energy from the G-matrix in the
RBHF model.

(1) The first one is assuming that the momentum de-
pendence of self-energy is very weak and considering the
X as a constant at a fixed density. The scalar and vector
components can be fitted through single-nucleon poten-
tial [60],

_ M: s 0
Un(k) = 5 23+ 52, (6)
T

where 2% and 20 are assumed as constants.

(2) It was recently extended to the second scheme,
where the negative states in the Dirac space were in-
cluded to reduce the uncertainties of single-particle po-
tential. Therefore, it is a unique way to determine nucle-
on self-energy and avoids the approximations in the pre-
vious method [57],
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where the symbol + denotes the positive and negative en-
ergy states, respectively.

(3) The last choice is the projection technique meth-
od using the Lorentz structure of the G-matrix, which can
keep the momentum dependence of nucleon self-energy
[58, 59]. In the present framework, the wave function is
restricted to the positive energy states so that the ambigu-
ity of one-pion-exchange potential is produced in the pro-
jection process, since the pseudoscalar (ps) and
pseudovector (pv) terms cannot be clearly distinguished
at on-shell scattering. Hence, a subtracted representation
scheme was proposed to solve such a problem [61, 62],

G =V, + V"7 + AG,. (8)

In ps representation, the G-matrix is separated into
five covariant Lorentz amplitudes, scalar (F®), vector
(FY), tensor (FT), axial-vector (F*), and pseudoscalar
(F?). The nucleon self-energy is evaluated via [59, 61,
62],

P 35 MEFS, + g FY
21-1-/ :f p T 1T ﬁT T (9)

e’ Exp)

with kT signifying the Fermi momentum for a proton or
neutron. Here, the antisymmetrized helicity matrix ele-
ments of F are taken into account, therefore, the contribu-
tions from tensor, axial-vector, and pseudoscalar com-
ponents are canceled with each other. While, in complete
pv representation, the covariant Lorentz amplitudes
should be expressed as interchanged Fermi covariants,
and use the pseudovector to replace the pseudoscalar,
¢SSAPVRV - where PV =PVS. The operator S can ex-
change the Dirac indices of two particles in the Lorentz
amplitude. The self-energy in the pv representation can
be calculated,

24K~
B (D = f @y 4E*<p> {(k Pty &
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(10)

The binding energy per nucleon in nuclear matter, Eg/A
can be written as a function of the nucleon number dens-
ity n and asymmetry factor @ = (n, —n,)/(n, +n,) [32]. At
zero temperature, according to the Hugenholtz-Van Hove
(HvH) theorem [44], the Fermi energy of a nucleon in a
thermodynamically consistent system is related to the en-
ergy density by

o(n.Eg/A
ETF = (TB/) T' (11)

The HF and RHF models have similar theoretical
frameworks as the RBHF model with the relativistic nuc-
leon-nucleon interaction. In the HF model, the interac-
tion between nucleons is adopted as the realistic nucleon-
nucleon potential and the nucleon mass is regarded as the
free nucleon mass. On the other hand, the nucleon mass
and single-particle energy in the RHF model should in-
clude the nuclear medium effect through the nucleon
wave function, i.e. the nucleon self-energies shown in
Egs. (9) and (10) with realistic nucleon-nucleon potential,
which will be replaced by the effective G-matrices in the
RBHF model.

Actually, the HvH theorem is largely violated in the
lowest-order BHF approximation [63] and in the RBHF
model treated by the projected scheme with complete pv
representation, while the violated effect is very weak by
using the complete ps representation [64]. In the present
framework, the subtracted representation is used, where
only the interaction of pion is projected to pv representa-
tion. Therefore, the HvH theorem should be approxim-
ately kept now and we can use it to study the Lorentz
components of symmetry energy.

The binding energy per nucleon at a fixed density, n
can be expanded with respect to the asymmetry factor o,

Eo(n)+a*Egym(n)+---, (12)

E
XB(n, @) =

therefore, the Fermi energy can be expressed as,

A(nE
E.g =M. + (g—n") +2730Egym
O(nEgym)
o’ [% —2Egym |[+0(@@), (13)

and the nuclear symmetry energy is able to connect to the
Fermi energy as,

1 GAEg
YT 4 da

(14)

a=0

where, AEr=E,r—E,r and 73 ==+1 for a neutron and
proton, respectively.
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In the RBHF model, the single-particle Fermi energy
is E.(k) = (1+Z¥)E:(k)—X2, which consists of the scalar
and vector self-energies. Therefore the symmetry energy
can be analytically expressed by the self-energy compon-
ents:

_ rkin pot
Egym =ES + ENn.,

M4\ 3%, 3E ’
n a=0

pF
” * 0 0
pot _L| M, 0%, M, 0%, 0%, ~%)
VU4 E Oa Eip Oa O
1 oy 1 0%
A 2 - —— 2 , (15)
Ep 0o ESL da
n p a=0

. . 13
with the average Fermi momentum kg = (37r2n / 2) P

The optical nucleon potential is essential for nucleon-
nucleus scattering calculations and has strong isospin de-
pendence. It is obtained in the RBHF model by reducing
the Dirac equation (4) to a Schrodinger-equivalent equa-

e,
tion, H = +UP [65, 66
2M, [ ]
. E B T2-30% 4 gy
U;’P:z;—ﬁfzﬁﬁzh*, (16)

which is expanded with respect to the asymmetry factor

o, Uy =U” +13aUgpy +---. The first term corresponds

to the isoscalar potential, and the second one is isospin

dependent, the so-called Lane potential [67], which can

be extracted from the nucleon-nucleus scattering data,

g YUY e _UCUY
0 2 ’ sym 20

III. THE NUMERICAL RESULTS AND
DISCUSSIONS

In Table 1, the nuclear saturation properties of sym-
metric nuclear matter, i.e. saturation density, ng, the
binding energy per nucleon, Eps,t/A, and incompressibil-
ity, K, are given by different schemes in the RBHF mod-
el, which were mentioned in Sec. II. The Bonn A, B, C
potentials are chosen as the realistic nucleon-nucleon in-
teractions. The momentum-dependence of self-energy is
neglected in scheme (1). The negative energy states are
considered in scheme (2). In scheme (3), the G-matrix are
projected to five covariant Lorentz structures. These sat-
uration properties from scheme (1) and scheme (2) are
very similar since the components of self energies are ob-
tained from the single-particle potential in these two

Table 1. The nuclear saturation properties of symmetric
nuclear matter from different schemes in RBHF model.
Scheme Potential no/fm=3 Eg sat/A/MeV K/MeV
Bonn A 0.180 —15.38 286
(1) [55] Bonn B 0.164 ~13.44 222
Bonn C 0.149 -12.12 176
Bonn A 0.188 —15.40 258
@) [57] Bonn B 0.164 ~13.36 206
Bonn C 0.144 -12.09 150
Bonn A 0.179 —16.18 250
3) Bonn B 0.163 —14.63 200
Bonn C 0.149 —13.68 170

methods, while the binding energy per nucleon from
scheme (3) has a slight difference from those from
schemes (1) and (2), since some parts of the G-matrix are
projected as ps amplitude, which can generate more at-
tractive contributions compared to the pv amplitude.

In the following calculations, pvCDBonn A potential
will be used as the input realistic nuclear force. It is a
high-precision charge-dependent potential including the
explicit charge symmetry breaking (CSB) and charge in-
dependence breaking (CIB) effects and has a relatively
small tensor force component, D-state probability of deu-
teron Pp =4.2% [68], which describes the properties of
symmetric nuclear matter and the neutron star very well
in the RBHF model [32].

To study the nuclear medium effect on the symmetry
energy, three types of calculations will be performed: (1)
The binding energy per nucleon and symmetry energy of
nuclear matter will be generated directly with pvCD-
Bonn A potential by the Hartree-Fock (HF) model, where
the nucleon wave function is a non-relativistic plane
wave. (2) The nuclear medium effect will be taken into
account in the nucleon propagator. The mass and single-
particle energy of a nucleon are dressed by nucleon self-
energies self-consistently in the mean-field method, i.e.,
the RHF model. (3) The Bethe-Goldstone equation will
be solved to include the medium effect both on the nucle-
ar potential and wave function with subtracted scheme of
the project method [61], based on the RHF model, and
achieve the RBHF calculation.

The results of binding energy per nucleon in symmet-
ric nuclear matter from three types of calculations are
presented in Fig. 1. In the mean-field approximation, the
strong repulsion of pvCDBonn potential at a short-range
distance cannot be properly handled. Hence, there is no
bound state in the symmetric nuclear matter, where
E/A >0 for all densities. Then, the nuclear medium ef-
fect is introduced into the nucleon propagator through the
Dyson equation. The self-energies appear in the denomin-
ator of the nucleon propagator and influence the nucleon
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Fig. 1.  (color online) The binding energy per nucleon in
symmetric nuclear matter calculated with pvCDBonn A po-
tential in the frameworks of HF, RHF, and RBHF models The
point RBHF curve indicates the saturation point of pvCD-
Bonn A (ng =0.19 fm™3, Eg/A(ne) = —16.89MeV).

mass and single-particle energy. They can be solved self-
consistently in a relativistic framework. The equation of
state (EOS) of symmetric nuclear matter from the RHF
model is obviously stiffer than that from the HF model,
especially in the high-density region. It is because the
nucleon-antinucleon excitation through exchanging the
scalar mesons, i.e., Z-diagram, can generate a very strong
positive contribution to the binding energy. In the RBHF
model, the short-range repulsion is removed by summing
all ladder diagrams of nucleon-nucleon scattering in a
nuclear medium with the Bethe-Goldstone equation. As a
result, the binding energy at the low-density region be-
comes negative. Its magnitude at saturation density,
Epsat/A =-16.69 MeV at ng =0.19 fm=> almost repro-
duces the empirical saturation properties of symmetrical
nuclear matter.

In Fig. 2, the scalar and time-component of vector
self-energies at the Fermi surface kg, X* , and X° in sym-
metric nuclear matter are presented from the HF, RHF,
and RBHF methods, respectively. At the HF level, we
directly calculated them with the free nucleon propagator
in Egs. (9) and (10), while the interacting propagator was
adopted in the RHF and RBHF models. The X° in the HF
and RHF models is almost the same since it is only de-
pendent on the covariant amplitudes, FV and g', which
have a few differences in the HF and RHF models due to
the effective mass and single-particle energy. Meanwhile,
scalar self-energies from the RHF model are signific-
antly larger than those from the HF model due to the me-
dium effect on the effective nucleon mass. Therefore, the
EOS of symmetric nuclear matter from the RHF model is
much stiffer. Furthermore, the magnitudes of X* and X°
from the RBHF model are both smaller than those from

1.9,

Fig. 2. (color online) The self-energies as functions of dens-
ity obtained from HF, RHF, and RBHF models.

the previous two models. The nuclear medium effect
renormalizes the realistic nuclear potential to an effective
one, whose covariant amplitudes are changed completely
comparing to those in the HF and RHF models. The re-
duction of vector self-energies leads to the bound states
of the nuclear many-body systems at low-density regions.

The isospin dependence of self-energies at empirical
nuclear saturation density, ng =0.16 fm=> from the HF,
RHF, and RBHF model is given in Fig. 3. With the asym-
metry factor, a increasing, the differences of the self-en-
ergies from neutron and proton become larger and the
scalar self-energy of the neutron is lower than that of the
proton, which is consistent with the conclusions from the
RHF model. Furthermore, the splittings between proton
and neutron self-energies from the HF model are the
largest among the three models, with the nuclear medium
effect is included, the splitting in the RBHF model at
a = 0.8 is just half of that in the HF model. Furthermore,
the self-energies in these methods almost linearly in-
crease with a.

The characters of nucleon self-energies will largely
influence the behaviors of the nuclear symmetry energy.
In Fig. 4, the symmetry energy, and its kinetic energy and
potential components from the HF, RHF, and RBHF
models are shown, respectively. In panel (a), the kinetic-
energy contributions of the symmetry energy Egp, from
the three models are plotted. All of them increase with
nuclear density. The HF results correspond to the free
Fermi gas. The effective nuclear mass in the RHF model
will reduce the effective single-particle energy, while the
vector self-energies are also identical in the the HF and
RHF models. Therefore, the EXp, from RHF is much lar-
ger than that generated by the HF model through Eq.
(15). Although the scalar self-energy from the RBHF
model is the largest among the three results, its vector one
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Fig. 3. (color online) The self-energies as functions of asym-

metry factor at empirical nuclear saturation density obtained
from HF, RHF, and RBHF models.

also decreases due to the medium effect on the potential.
Therefore, its EXJ, is less than that from the RHF model.

The potential contributions of symmetry energy, Efy,
are given in panel (b) of Fig. 4. The curve from the HF
model increases as a linear relationship with the density,
which is determined by the similar behaviors of the scal-
ar and vector self-energies as shown in Fig. 2. The poten-
tial contribution of symmetry energy from the RHF mod-
el below the saturation density is almost identical to that
from the HF level, where the strengths of scalar fields are
still small. It grows rapidly in the high-density region and
shows a strong relativistic effect. Meanwhile, the result
generated from the RBHF model shows a completely dif-
ferent tendency compared to the other two models. At
low density, the Ey, in the RBHF model is much larger
than those from the HF and RHF methods, since the
tensor force plays a very important role below the satura-
tion density in symmetric nuclear matter [32], which can-
not be treated at the mean-field level but was taken into
account in the RBHF model. With density increasing,
part of the tensor force is weakened, while nucleons are
closer to each other and the short-range correlation be-
comes significant, which will be shown in detail later.
This medium effect will suppress the potential contribu-
tion of the symmetry energy.

The total symmetry energies of nuclear matter, Egym
as functions of density are plotted in panel (c) of Fig. 4.
Its value at the saturation density iS Egym(nsa) = 34.48

SO
40F PVCDBonn A ="
~ [
v
=
cE
25
w
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()
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imQMD(20) EDP Rl
100F IBUUO4 As 7 ]
r HIC i .
> 80}
%J [
= 60F
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> L
w40
20F
:4..I....l....l....l....'
8.0 0.1 02 03 04 05
n [fm=3]
Fig. 4. (color online) The symmetry energy and its compon-

ents obtained in the three models. The shaded regions in pan-
el (c) are constraints from various sources, explained in the
context.

MeV. At the same time, the recent constraints from vari-
ous experiments on Egyy,, such as the heavy-ion collision
(HIC) [9], electric dipole polarizability (EDP) of 2°*Pb
[69], isobaric analog states joint with neutron skin thick-
ness [7] (IAS), the improved quantum molecular dynam-
ics calculation (imQMC, 20 confidence region) [8], and
transport model simulation of isospin diffusion experi-
ment (IBUUO4) [23], are also given. It can be found that
the symmetry energy from the RBHF satisfies all these
constraints in the whole density region. Due to the tensor
effect, the symmetry energy in the RBHF at low density
can describe the data from HIC, EDP, and IAS better.
Meanwhile, the RHF model provides too large a sym-
metry energy without the high-momentum correlations.
In the work of Cai and Li, it has already been noted that
the high-momentum contributions can reduce the sym-
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metry energy [43].

In the RBHF model, it is very difficult to clearly dis-
tinguish the roles of various components of realistic nuc-
leon-nucleon interaction due to the iterated process. A
good approximation was proposed in Ref. [70] to discuss
the tensor force contribution in the BHF model, where it
was regarded as the second-order perturbation term of
tensor force. In this study, the same schemes are adopted
to show the tensor force contribution to the potential
component of symmetry energy in Fig. 5. It can be found
that the tensor force plays an essential role around the sat-
uration density region, while it becomes weaker as dens-
ity increases. On the other hand, the tensor effect on the
symmetry energy was also discussed in the DDRHF mod-
el [71], where the tensor force provided a negative contri-
bution to the symmetry energy. It may be caused by the
different definitions of tensor force between their work
and the present one.

The symmetry energy from the potential part also can
be decomposed into the covariant Lorentz structure in the
project scheme of the RBHF model. The scalar, vector,
and pseudovector terms are shown in Fig. 6. In the
present subtracted-G matrix method, the one-pion ex-
change potential is projected to the pv representation and
only has the pseudovector amplitude, gV [72]. The re-
maining part of the G-matrix is projected to ps represent-
ation and transferred to the scalar and vector covariant
amplitudes, FS and FV, after taking the antisymmetrized
helicity matrix elements. The contributions from the scal-
ar and vector components are gradually cut down from
the HF to RBHF model but always dominate the Efy,,
while those from the pseudovector amplitude are very
small due to the Fock term and only provide a few attract-
ive contributions in the HF and RBHF models, which is
opposite to the recent results about the role of the pion in
the RHF model [49]. Here, we must emphasize that in the

50_
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Fig. 5. (color online) The contributions of tensor and cent-
ral forces on the potential components of symmetry energy.
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Fig. 6. (color online) The covariant amplitude contributions
in the potential component of symmetry energy from HF,

RHF, and RHF models.

conventional treatment, the contact component in one-pi-
on-exchange potential will be removed in the RHF mod-
el [21]; therefore, the pion contribution has an opposite
sign.

Finally, the real part of optical potential, U;" , is ex-
tracted from the RBHF model with the Schodinger-equi-
valent potential. Its isoscalar and isovector components as
functions of incident energy & = (1 +Z¥)EX(k)— 22— M, at
empirical saturation density, no=0.16 fm=3 with differ-
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Fig. 7. (color online) The isoscalar optical potential and the

Lane potential, at n, obtained with different a, as functions of
incident energy.
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ent asymmetry factors, a, are presented in Fig. 7. These
optical potentials are almost identical with different a.
The corresponding analysis by the global Dirac optical
model (Hama90) [73], averaged global optical potentials
(Xul0) [74], and nonrelativistic optical models (Lil5)
[75] is also shown to be compared. The isoscalar optical
potential, U;” , from the RBHF model, monotonously in-
creases with the incident energy and is consistent with the
analysis by Hama and Li et al. [73, 75]. However, for the
isovector component, Ugy,, i.e., the Lane potential, it has
a completely different behavior from the RBHF model,
which is obviously larger than those from the analysis
with nonrelativistic optical models [74, 75] and slowly
decreases at higher incident energies. In this region, there
is not enough experimental data until now, which should
be clarified in the future.

IV. SUMMARY AND OUTLOOK

The nuclear symmetry energy was investigated in the
framework of the relativistic-Brueckner-Hartree-Fock
(RBHF) model within a high-precision nuclear potential,
the pvCDBonn potential, which perfectly satisfies the
various constraints from recent experiments. The kinetic
energy and potential components in symmetry energy
were decomposed into the nucleon scalar and vector self-

energies, which were provided by the project scheme of
the RBHF models.

By comparing the results from the Hartree-Fock (HF)
and relativistic Hartree-Fock (RHF) models, it was found
that the relativistic effect provides a very strong repuls-
ive contribution to the symmetry energy, while the nucle-
ar many-body medium effect generated by the RBHF
model reduced the kinetic energy part of the symmetry
energy. The tensor force played a significant role around
ion density for the potential terms of the symmetry en-
ergy. The potential component of symmetry energy can
be further separated into various Lorentz covariant amp-
litudes. The main contributions were generated by the
scalar and vector amplitudes, whereas, the pseudovector
amplitude from one-pion-exchange potential only
provided a few attractions.

The real part of nucleon optical potential was also ex-
tracted in the RBHF model and was compared to the re-
cent analysis by the global optical potential models. The
isoscalar terms of optical potential from the present cal-
culations are consistent with the available analysis,
however, the isovector optical potential term from the
RBHF model has obvious differences and decreases with
the incident energy slowly due to the relativistic effect.
Therefore, the relativistic optical potential analysis in
nucleon-nucleus scattering will be done in the future.
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