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Abstract: In this work, we generate gauge configurations with Ny =2 dynamical charm quarks on anisotropic lat-
tices. The mass shift of 1S and 1P charmonia due to the charm quark annihilation effect can be investigated directly
in a manner of unitary theory. The distillation method is adopted to treat the charm quark annihilation diagrams at a
very precise level. For 1S charmonia, the charm quark annihilation effect barely changes the J/i mass, but lifts the

1. mass by approximately 3—4 MeV. For 1P charmonia, this effect results in positive mass shifts of approximately 1

MeV for y,; and h., but decreases the y.» mass by approximately 3 MeV. We did not obtain a reliable result for the

mass shift of y.o. In addition, we observed that the spin averaged mass of the spin-triplet 1P charmonia is in good

agreement with /., as expected by the non-relativistic quark model and measured by experiments.
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I. INTRODUCTION

The hyperfine splitting of charmonia, namely
AMyyp, = My, — M, is a good quantity to test the preci-
sion of lattice QCD studies when charm quarks are in-
volved. There have been many lattice efforts on AMyy,
from both the quenched approximation and full-QCD
simulation with dynamical quarks. A recent full-QCD
calculation gives AMyy, = 116.2(3.6) MeV after the con-
tinuum extrapolation [1], which is consistent with the ex-
perimental value AME?? =113.0(0.5) MeV [2]. The latest
calculation carried out by the HPQCD collaboration finds
AMyy, = 120.3(1.1) MeV at the physical point after con-
sidering the quenched QED effects [3]. Obviously, this
result, with a much smaller error, still deviates from the
experimental value about +7.3(1.2) MeV. Actually, most
of the lattice QCD calculations of AMyy, do not consider
the contribution of charm quark annihilation diagrams (or
disconnected diagrams) to the charmonium correlation
functions, which may be the major cause of the systemat-
ic uncertainty. Although this kind of contribution is ex-
pected to be highly suppressed due to the Okubo-Zweig-
lizuka rule (OZI rule) [4-6], its contribution to AMyy, can

be sizable. To be specific, the contribution of disconnec-
ted diagrams to the J/y correlation function is of order
O(a?) based on a naive power counting of the strong
coupling constant a;,, while it is of order O(a?) for the
case of .. Especially, since n, is a flavor singlet pseudo-
scalar, its coupling to gluons can be enhanced due to the
Ua(1) anomaly of QCD, which may shift the . upward
in the similar sense of the origin of 7’ mass [7]. Further-
more, given the lattice prediction of the pseudoscalar
glueball mass Mg ~2.56 GeV [8-10], which is close to
the n. mass, the n.-glueball mixing may introduce an ad-
ditional mass shift of M, . Of course the light hadronic
intermediate states also contribute in the presence of the
light dynamical quarks. Therefore, the above effects
should be taken into account if one wants to obtain a
more precise theoretical determination of AMyyp,.

There are also a few lattice studies on the annihila-
tion diagram contribution to the masses of J/y and 7.
[11, 12]. It is found the mass of J/y is affected little by
this effect, but the n, mass can be sizably changed. Thus
itis very possible that the annihilation diagram correc-
tion to AMpy, comes mainly from the shift of M, .
However, no quantitative results have been obtained due
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to the large statistical errors yet. A more sophisticated lat-
tice study can be found in Ref. [13], where the disconnec-
ted part of the pseudoscalar correlation function D(r)
with respect to the four-dimensional distance r is com-
plicatedly parameterized by intermediate states and quite
a few excited states. The major results are that the discon-
nected diagrams result in an approximate +2 MeV shift of
M, in the quenched approximation and an approximate
+8 MeV shift in the Ny =2+1 full QCD case. However,
for the lack of sea charm quarks, the mass shift of
charmionium states stemming from the disconnected dia-
grams can only be derived indirectly and the complicated
parameterization of D(r) may introduce theoretical uncer-
tainties.

In this work, we investigate directly the contribution
of charm sea quark loops to the masses of charmonium
states. To do so, gauge configurations with charm sea
quarks are necessary, such that the theory is in a unitary
manner for charm quarks. As an exploratory study, we
generate gauge ensembles on anisotropic lattices with
Ny =2 degenerate sea quarks whose mass parameters are
tuned to be close to the charm quark mass (the effect of
light u, d and s sea quarks is ignored temporarily for sim-
plicity). In the presence of charm sea quarks, the full cor-
relation functions of charmonia (including the connected
and disconnected parts) have well-defined spectral ex-
pressions, from which the masses can be derived directly.
The key task is to perform a precise calculation on the
disconnected diagrams involved. Technically, we adopt
the distillation method to treat the charm quark annihila-
tion effects [14]. On the other hand, a large number of
statistics is mandatory to get the precise signals of discon-
nected diagrams. Therefore, for the computational ex-
pense to be affordable, we generate large gauge en-
sembles on anisotropic lattices with the spatial lattice spa-
cing a, being larger than the temporal lattice spacing «;.
Based on this numerical prescription, we would like to in-
vestigate directly the effect of charm quark loops on the
masses of 1S and 1P charmonium states.

As we will have a large number of statistics for char-
monium correlation functions, we can test the 'Center of
Gravity' relation for both 1P and 2P states and try to give
an estimate of the mass of 4.(2P). In the quark model pic-
ture, the 'Center of Gravity' mass is expected to be equal
to the mass of the spin singlet [15] for charmonium states.
With a large number of statistics, it may be possible to
test this relation precisely on the lattice.

This paper is organized as follows: In Sec. I we will
give a brief introduction to the lattice setups for the calcu-
lation and the distillation method. Sec. III is devoted to
the lattice derivation of mass shifts of 1S and 1P char-
monium states owing to the disconnected diagrams. As a
byproduct, In Sec. IV we check the agreement (or devi-
ation) between the 'center of gravity' mass and the mass
of the spin-singlet state for 1P and 2P charmonium from

the connected part of charmonium correlation functions.
The summary can be found in Sec. VL.

II. LATTICE SETUP AND THE DISTILLATION
METHOD

A. Lattice setup

The gauge configuration ensembles are generated on
anisotropic lattices. The gluonic action is chosen to be the
tadpole improved version [9, 10, 16, 17]

S _‘52 5TrPyy 1 TiRy 1 TrRys
&= 9 yeut 36 yul 36 yul

§<8’ s

4y, TrPy 1 v, TrR;
—ﬁZ[‘ A ()

9 2 36

where P,, and R,, are the 1x 1 plaquette variable and the
2x 1 rectangular Wilson loop in the uv plane of the lat-
tice, respectively, with s, ' referring to the spatial direc-
tion and v = ¢ referring to the temporal direction. The tad-
pole parameter u, is defined through the spatial plaquette

1 . .
u3=<§ReTrP,»j>‘/4, and is tuned self-consistently (The

tadpole parameter of the temporal gauge links is set to be
u; = 1 as usual). The parameter v, is the bare aspect ratio
parameter y, ~ as/a; with a; and a, being the lattice spa-
cing in the spatial and temporal direction, respectively.
For fermions, say, charm quarks in this work, the action
is chosen to be the anisotropic version of tadpole im-
proved tree-level clover action [10, 17, 18] proposed by
the Hadron Spectrum Collaboration

Sp= 9

1 1 N
__(ﬁ"'_) o1sFs

A 1 .
mo +71Wt + Z _ysz
gl

4ul\yy &
11 L

+ v ZO—SS’FSS’ Y(x), 2)
ulvr &

. 1 . . .
where F,, = ZIm(P”V(x)) and the dimensionless Wilson
operator reads

A

1
W=V, - EV#AW

1 foo
V@) =5 | Un)Bss = Uj(x = @)
Ap(x) :Uy(x)dx,x+ﬂ + U; (x _ﬁ)éx,x—,a -2. 3)

For the given B and the bare quark mass parameter my,
the bare aspect ratio y; for fermions in Eq. (2) is tuned
along with vy, to give the physical aspect ratio ¢ =5 that
is derived from the dispersion relation of the pseudoscal-
ar (77.) meson
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where £ and 7 are the energy and the mass of the had-
ron in lattice units, and p; is the lattice momentum p; =
2ntn; /L.

In practice, the procedure of the tuning of parameters
is very complicated, since the parameters {8,y,, v, us, mo}
are highly correlated with each other. We omit the details
here and just present the final ensemble parameters in
Table 1.

Table 1. The parameters of the gauge ensembles used in this
work. The spatial lattice spacing ay is set from the static po-
tential and the Sommer's parameter ro = 0.491 fm. We use two
bare quark mass parameter my, which give the spin average
masses Maye of 7. and J/y close to the experimental values.

Label ,B L‘?, xXT as/fm f mo chg Mavg/GeV
El 28 163x128 0.1026 5 0.0408 6000 2.672
E2 28 163x128 0.1026 5 0.0549 6000 3.006

As an exploratory study, we ignore the effect of light
quarks and generate gauge configurations with Ny =2
flavors of degenerate charm sea quarks on an L3xT =
16> x 128 anisotropic lattice with the aspect ratio being
set to be £ =a,/a, =5. The lattice spacing a, is determ-
ined to be a; = 0.1026 fm through the static potential and
ro =0.491 fm. The bare charm quark mass parameter is
set from the spin average of physical J/¢ and n, masses.
This lattice setup is based on two considerations: First, it
is known that the signals of gluonic operators are very
noisy and demand a fairly large statistics. Second, we will
use the distillation method to tackle the quark annihila-
tion diagrams (see below).

B. Distillation method

Quark-antiquark mesons can be accessed by quark bi-
linear operators ¢ (x,)Ky(x,y; )¢’ (y,£) on the lattice. The-
oretically, these operators can couple with all the meson
states and possible multi-hadron systems which have the
same quantum number. If one is interested in the lowest-
lying states, the quark field y(x) can be spatially smeared as

Gl (x,1) = D, Wl (y,1), Q)

where a,b are color indices, a refers to the Dirac spin
component, and ®%(x,y) is the smearing function at
timeslice ¢. Hadronic operators constructed out of
smeared quark field ¢ can dramatically reduce their
coupling with much higher states. In order to obtain ®*,
we adopt the state-of-the-art approach, namely, the distil-
lation method [14], which is briefly described as follows.

The distillation method starts with solving the eigen-
value problem of the gauge covariant second order spa-
tial Laplacian operator on each timeslice of each gauge
configuration

A ORUGENRIION (6)
where the spatial Laplacian is expressed explicitly as

3
—V2,(1) = 68xy— > (0, 0054 + U (x = . 0065y, (1)
j=1

where i,j are spatial indices and U is the stout-link
smeared gauge link. After that, for a given Dirac index «a,
each eigenvector v§")(t) is used as the source vector to

solve the linear equation array
Mos 7. ’ S ’. (n) N )y 8
ﬁé(ZJ i N ) 6(1/(x,t sy’t)vy (t) =V (t )5&1’ ( )

where the matrix M is the Dirac matrix of fermions on
the lattice and § = M~! is the corresponding fermion
propagator. This procedure is repeated for all the Dirac
indices @ =1,2,3,4, the timeslices 1€ [0,7 —1] and the
number of the eigenvectors N. Finally, multiplying the
eigenvectors vi”')’T(t’) to each of the solution vectors
Ssa(x,t; y,t)vg”)(t) one gets for given ¢, ¢t and 6, a the
matrix elements in the subspace expanded by the N ei-
genvectors,

1) = v (S s, 75y, (D), 9)

which are usually called perambulators. Based on these
perambulators, we can define a propagating matrix

N
Pop(x, 3,1 = > VPO (1, (@)

nn'=1

=0(x,u;1)S op(u, ;v,0 )0V, y: 1) (10)

with

N

o, y;0) = Y W ow 0 = [vovio)

n=1

(11

b
xy

being the desired smearing function, where V is a
3V3 x N matrix with each column being one of the eigen-
vectors v(¢) for n=1,2,...,N and the row number 3V;
referring to all the spatial points and color indices. Obvi-
ously the propagating matrix P,g(x,;y,t") can be viewed
as the propagator of the smeared quark field ,(x,t) =
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D(x,y,Hpo(y,1) in the background gauge field {U,(x)},
namely,

Pop(x,153,0') = (fra (6, D, )0 (12)

Note that if N =3Vj3, then the completeness of v*(¢) im-
plies that ®(x,y;#) = 8xy ® Icolor, Such that Ps(x,y) is actu-
ally the all-to-all propagator of the original fermion field
. One can define the norm of the smearing function

W(x -y = ) [Trdx,y;n@(p,x:0]'*  (13)

to measure the degree to which the quark field is
smeared. Due to the translational and the rotational in-
variance, P(r) can be averaged over all the coordinates
x,y that satisfying r =[x —y|. It is easy to see that, if all
the eigenvectors are involved in defining ®(x,y;?), then
the completeness and the orthogonalization require
Y(r) o« §(r). If the number of eigenvectors involved is
truncated to be N <3V3, then ¥(r) is smeared from a
delta function to a function falling off rapidly with re-
spect to r. Figure 1 shows the profiles of ¥(r) in data
points at N = 10, 30, 50 and 100, where W(r) damps faster
when N becomes bigger, and the dashed curves are naive
fits using Gaussian function forms in the interval
rlas € [0,6]. We take N = 50 in this study.

Now consider meson operators constructed out of the
smeared quark field,

OA(t) = (x, DK (x,y;: DY (v, 1),
O() =h(x, DKE (x,y; )iy, 1), (14)

which have the same quantum number J”¢. The connec-
ted part of their correlation function can be expressed as

Cap(t.¥) ==Te| Px.1;y . )KE (5 ,y3)

X P(y,t';x',t)K?}(x',x; t)]

=— Tr[cb(x,u; DS W, t;v, YO,y ;1)
XKp(y yit YO, wit)S (w,1':2.1)
X D(z,x" ;1)K (X, x; t)]

=—Ti| V(&' , DK (x',x, OV (x, 1)7(8, )
X VI KLYy, V(.0 1)

=-Tr [¢A(t)7'(t, Pt t)], (15)

where

oM () = VI 0K (2, .0V (3,1, (16)
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Fig. 1.
¥(r) of quark fields. The data points are the values of ¥(r)

(color online) The profiles of the smearing function

with the number of the eigenvectors of the spatial Laplacian
N =10, 30, 50 and 100. The dashed curves are naive fits using
Gaussian function forms in the interval r/a; € [0,6]. We take
N =50 in this study.

is the characteristic kernel that reflects completely the
structure and the properties of operator O*5(t). The last
equation of Eq. (15) is the generic expression for meson-
ic two-point functions in the distillation method, where
the perambulator 7(¢,#") is universal and the information
of the meson operators are completely encoded in ¢*-5(t).
The disconnected part of the correlation function can be
similarly derived in terms of ¢*2(f) and 7(¢,7') as follows

Dag(t,t) = Tr[p* (Or(t, 0| Tr[¢P()e@ 1)) (17)

Finally, the full correlation function of O%(r) and
OB(r) is

Gap(t,t') = Cap(t,t') + Dap(t,1'). (18)

The Eq. (18) is the basic expression we apply to calcu-
late the corresponding correlation functions of 1S and 1P
charmonia.

There are subtleties in considering the contribution
from the annihilation diagrams to the charmonium masses
since there are two degenerate sea quark flavors in this
work. This means there is a SU(2) global flavor sym-
metry, named as the isospin symmetry in principle. Thus
the connected part of the correlation functions are actu-
ally

1 . I _
Cij(0) = Ec{j—O(z) + Ec{j-l(t) =C2), (19)

if the flavor wave functions of 7=0,1 are taken as

1 .. .
$(Ec +¢’¢’). Similarly the disconnected part should be

1,
Dij(0) = 3 D), (20)
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since gluons are isospin singlets and couple only with
I = 0 states. Therefore, the full correlation function of the
I =0 states is

G0 = Cij(0) +2Dy(0). Q1)
A special attention should be paid to the 0** channel.
The quark loops in this channel have nonzero vacuum ex-
pectation values and should be subtracted. For this we ad-
opt a 'time-shift' subtraction scheme [10] by redefining
the correlation function as
G (=G (1)-G" (1 +61), (22)
where the vacuum constant term cancels. In practice, we

choose 6t =5. The price we pay for this is a little loss in
the signal-to-noise ratio.

III. ANNIHILATION DIAGRAM CONTRIBU-
TION IN DIFFERENT CHANNELS

As the first step, we compare the relative magnitudes
of the contribution of the annihilation diagram to the con-
nected counterpart in each channel, which is measured by
the ratio for a specific channel labeled by T’

ratios R'(¢) at the two quark masses are shown in Fig. 2
and Fig. 3 for channels with J°¢ =07*,177,(0,1,2)** and
1*~. It is seen that the magnitudes of R'(¢) are of order
01073 -107): The R'(¢)'s of 0°*, 0** and 2** channels
are much larger than those of the other three channels.
This is understandable since the charm quark loops in
07+,0** and 2** channels are mediated by two gluons to
the lowest order of QCD, while the charm quark loops in
other three channels are mediated by at least three-gluon
intermediate states. On the other hand, the disconnected
part of 0™* can be also enhanced by the QCD U,(1) an-
omaly. Especially, the R' () of 17~ is two orders of mag-
nitude smaller and turns out to be approximately inde-
pendent of 7.

The contribution of the disconnected diagrams to
charmonium masses can be estimated as follows. For
convenience, we drop the superscript 'T" temporarily in
the following discussion. Usually the connected part of
the charmonium correlation functions and the full correla-
tion functions can be parameterized as

Wi _
Cty= )y —e™,
Zi: 2m,-

Wi —m
G(t)=2%e ., (24)

2D (¢ . o
R'(t)= n ), (23) Table 2. The gamma matrix combinations I' for the J7¢
T .
c,,® channels corresponding to 1S and 1P states.
) . ) JPC o+ 1 o+ 1+ 1+ o+t
where the subscript '11' refers to the correlation function —
. r s Yi I YsYi €ijkT jk l€ijily Vi
of the |r|/a; = 0 operator in the operator set of the I" chan-
© . . 1S,1P . J 0 1 he 2
nel. The explicit operators are tabulated in Table 2. The e v x e < e
0.0040 0.0010 ‘ 0.0100 i
Caiset) n—+ Caiselt) 1—— Caise(t) A4+
0.0026 b0 00006 I P R L /
- L {
00012 _ . . I { [ } . 0.0052 7
= = 0.0002 - = 7
;)
= 00002 < R o ! \ = oo - _~”
—0.0016{ ~0.0002 0.0004{
~0:00807 9 14 19 ~0:00067 5 10 15 20 NS 8 0 2 11 16
t t t
0.0010 0.0100 0.0020
Cuise(t) 1++ Cise(t) o+ Cise(t) 14—
0.0002{ . bt 0.0076 o2 0.0014 ) boae!
__—0.0006 00052 1 i . 0.0008 .
= = . =
& 00014 st = 0.0028 / = 0.0002 N
000 \ ] } 0.0004 —0.0004 ]
~0.00307 5 10 15 B A A N A B T T R R R R GRS VI 1¢
t t t

Fig. 2.

(color online) The ratio functions R(t) for the six channels J¢ =07*,177,(0,1,2)** and 17~

on gauge ensemble E1. The shaded

curves with error bands are the fit results using the linear part of Eq. (30) for 17—, 1*%, 2** channels and the results for 0** channels us-

ing Eq. (32). The darker regions indicate the fit time range.
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0.0100 0.0020 ‘ 0.0100
Caise(t) =+ Caise(t) 1-— Caise(t) ++
0 facd ] Gadl)
0.0076 b o 0.0012 L 0.0076 b o
__0.0052 1 . 0.0004{ * - t _0.0052
z = e =
0.0028 —0.0004 } l 0.0028(
0.0004{ —0.0012 ] 0.0004{
) _ | 000
000205 5 10 15 20 000205 5 10 15 20 V00— § 1 12 1 T
t t t
0.0010 0.0100 0.003
Cise(t) (fl ++ Ciiise(t) o4+ Caiselt) f) +-
.1 2 1
0.0004 ] 0.0076 b 0.002 i
0000 . 0.0052 i { __0.001 ..
S s S
=4 & g
—0.0008 0.0028 / 0.000{ = w
= . * o
~0.0014 0.0004 0.001
2 - — — 2
00020 5 10 15 W=7 5 § 1w 10 0 W=7 ¢ § 1 0 1 16
t t t
Fig. 3. (color online) The ratio functions R(7) for the six channels J*€ =07+,177,(0,1,2)** and 1*~ on gauge ensemble E2. The shaded

curves with error bands are the fit results using the linear part of Eq. (30) for 17—, 17, 2**+ channels and the results for 0** channels us-

ing Eq. (32). The darker regions indicate the fit time range.

Since G(r) = C(¢) +2D(¢), the ratio of the disconnect part
to the connected part can be expressed as

Z 2m,

2D(t) i

c@ - Zz_ie_mt
- m;

Intuitively, each mass term in the correlation function
C(1) is given by the propagator in the momentum space,
namely, W;/(p*—m?). When the disconnected diagrams
are considered, the propagator acquires a self-energy cor-
rection —X(p?), which is independent of the states. Thus
the full propagator contributing to each term of G(r) can
be expressed as

-1

R() = (25)

w; _ Wi W
pr+ 12 _p2+m.2+2(p2) B p2+m.2
‘/_ \/_ VWi ( X(p%))
"W
2+ m?
’ (26)
with the relations
. d=(p?)
W, =W;|1- ap? — 5 |p=iz | = Wil + &),
g =m? + X (=in). (27)

Based on the OZI rule and from the observation in

Fig. 2 and Fig. 3, it is safe to assume ¢ <« 1 and ém; =
m; —m; < m;. Thus we have

I(—m?)

2m; m,

ml

(28)

5m,~ =

A;
5m1 +A (1+—1)61},
2m1

where A; =m;—m; has been defined and Z(p?) is as-

sumed to be varying very slowly with respect to p?. The

latter is obviously justified by the observation that R(r) is

usually of order O(1073) or even smaller. If we assume ¢;

is insensitive to p? in the energy range of interest, we can
n .

~ —o6my, which

i

take the approximation ¢ ~ & and 6m;

imply
B =0, (1- 22 <, (29)
m;
Thus we have
0
R(H) ~—6mit+e — L
mi
5m1 WmlAl —At
+F(H)— +--- 30
mip ; Wlm (30
where
W 1
F(t)—{l+z . -Af} (31

The last term in Eq. (30) will die out when ¢ increases.
Therefore, if R(r) shows up a linear dependence on ¢ in a
time region, the contribution of the disconnected dia-
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grams to the ground state mass, namely, ém;, can be ex-
tracted by the slope of R(¢) in this region.

From Fig. 2 and Fig. 3, one can see that, for the
(1,2)**, 17~ and 1%~ channels, R(r) does show linear be-
haviors in different time regions. Therefore, in these time
windows, we can drop the last term in Eq. (30) and fit
R(#) using linear functions. The fit results are shown in
these plots by curves with error bands, where the bands in
darker colors illustrate the fit time window [fuin, fmax] (the
values of r are in the lattice unit g, in the context). The
fitted slopes 6m{a, and the y?/dof'son the two en-
sembles (labeled as E1 and E£2) are listed in Table 3 along
with the y?/dof in the fitting time window [fmin, fmax] giV-
en in the table. It should be noted that the large errors of
the ratio function R(r) come from the disconnected dia-
gram which becomes very noisy beyond 7~ 10. In the
17~ channel, R(r) shows good linear behavior in the time
interval 7€ [4,9] (very close to a constant) on both en-
semble £1 and E2, so we attribute the behavior of R(7) in
the interval [9,14] to be mostly statistical fluctuations.
Actually, the data points in this interval deviate from the
linear behaviors determined from the interval ¢ € [4,9] by
less than 2¢-. If we include the data points in the interval
t € [10, 14] to the fit, the central value does not change by
much with a mildly larger y?/dof. Actually on E2 en-
semble, all the data points in the interval [4,14] converge
to a single line.

Obviously, the 6m; of the J/y is tiny and consistent
with zero within the errors. This can be understood as the
result of the strong suppression based on the Okubo-
Zweig-lizuka rule (OZI rule) [4-6], since the two charm
quark loops are mediated by at least three intermediate
gluons. For y.; and h., the mass shifts due to the charm
annihilation effect are small but non-zero. This is under-
standable since the contribution of two-gluon intermedi-
ate states is suppressed to some extent due to the Landau-
Yang theorem [19, 20]. It is surprising that this kind of
mass shift of y., is relatively large and negative. The
reason for this is not clear yet. Intuitively, lattice QCD
studies predict that the lowest tensor glueball mass is ap-
proximately 2.2-2.4 GeV [8-10, 21, 22], which is lower
than the y., mass and should result in positive mass shift

if y.» and the tensor glueball can mix.

The situation of the scalar and the pseudoscalar chan-
nels is a little more complicated. It is seen in Fig. 2 and
Fig. 3 that the ratio functions R(¢) in these two channels
increase rapidly when ¢ is large. This observation signals
that there may be lighter states than the ground state char-
monium contributing to the correlation function G(¢) in
the scalar and pseudoscalar channels. Actually, lattice
QCD calculations predict that the masses of the lowest
scalar and the pseudoscalar glueballs are 1.5-1.7 GeV
and 2.4-2.6 GeV [8-10, 21, 22], respectively. When the
disconnected diagrams are considered, these glueballs can
contribute as intermediate states to the correlation func-
tion G(t). Therefore, more mass terms should be added
into the expression of G(r) (Eq. (24)) to account for the
possible contribution from glueballs. Consequently, Eq.
(25) for these two channels may be modified to

R(t) = R(t) + W™, (32)

where A, =m;—mg >0 is a parameter resembling the
mass difference between the ground state glueball and the
corresponding charmonium state. Of course, one-glue-
ball or multi-glueball states (if they exist) can also ap-
pear in other channels, but Fig. 2 and Fig. 3 show that
their contributions have no sizable effects and can be ig-
nored in practice.

We tentatively use the functions form of Eq. (32) to
fit R(r) of the scalar and the pseudoscalar channels, with
R(?) in this equation being approximated by a linear func-
tion. The fit results are illustrated in Fig. 2 and Fig. 3 by
curves with error bands, where one can see that the func-
tion form describes the data very well in large time
ranges. This manifests the efficacy and the necessity of
the second term in Eq. (32). The mass shift 6m; of the
ground state pseudoscalar charmonium 7, is determined
to be +3.0(1) MeV for E1 ensemble and +3.1(2) MeV for
E2 ensemble, respectively. 6m; is converted into the
value in physical units using the temperal lattice spacing
a;'=9.62 GeV. This result is consistent with the previ-
ous result in Ref. [13] and the result 6m; = 3.9(9) MeV
derived from the glueball-charmonium mixing mechan-

Table 3. The mass shifts a,6m; for all the six channels. The fit time ranges [fmin,fmax] and the values of the y? per degree of freedom
(x*/dof) are also presented.
17:(0™) J/y(177) Xc0(0*F) Xe1(17) Xe2(2*F) he(1%7)
[#min, fmax] [5,20] [4,9] [3,14] [7,14] [5,10] [3,13]
smla; (E1) 0.00031(1) ~ 106 0.007(5) 0.00014(2) ~0.00031(3) 0.00010(1)
x2/dof 1.5 0.78 0.62 0.59 0.82 0.71
[*min» fmax] [6,20] [4,14] [3,14] [6,14] [4,10] [4,13]
omba, (E2) 0.00032(2) ~ 106 0.003(4) 0.00006(2) —0.00029(2) 0.00012(2)
x?/dof 1.4 0.59 0.64 0.71 1.3
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ism [23].

The values of the y.o mass shift are fitted to be 67(48)
MeV for E1 ensemble and 29(38) MeV for E£2 ensemble,
respectively. The results for y. have large errors due to
the nonexistence or shortness of the linear behavior. Due
to the large error, we cannot get a reliable final result of
the ém; for y ..

Using the lattice spacing a;!' ~9.62 GeV, we get the
mass shifts 6m; as follows:

El:  6m(0*)=3.0(1) MeV,
Smi(17) =1.3(2) MeV,
6mi(27) ==3.0(3) MeV,
smi(177) =1.0(1) MeV.
E2;  om(07%)=3.1(2) MeV,
Smi(17%) =0.6(2) MeV,
6mi(27) =—2.8(2) MeV,
smi(177) =1.2(2) MeV. (33)

Since the fitted 6m;(177) is very small, we do not quote
its value here but only say that the charm annihilation ef-
fects in 17~ are negligible. The mass shifts 6m; from E1
and E2 ensembles are compatible with each other in most
channels except for the 1** channel, where the deviation
of ém; values on the two ensembles is larger than 3o
The reason for this discrepancy is not clear yet and
should be investigated in the future.

IV. THE CENTER OF GRAVITY MASS OF
P-WAVE CHARMONIUM

Now that we have calculated the perambulators of
charm quarks on the two gauge ensembles of large statist-
ics, we would like to take a look at the charmonium spec-
trum. In this work, we will focus on the lowest two states
in JP€=07*,177,(0,1,2)*" and 1~* channels. In the pre-
vious sections we have shown that the inclusion of the
disconnected diagrams does not change the masses of
charmonium states much, so in the following discussions
we only consider the connected part of the correlation
functions. For each JP¢ quantum number, we will first
build an operator set, then calculate the correlation mat-
rix of the operators in this set. After that, we will solve
the generalized eigenvalue problem (GEVP) to obtain the
optimized operators that couple most to specific states.
What follows are the technique details.

A. Optimized operators through variational method

As we addressed in Sec. II.B, the distillation method
automatically provides the gauge covariant smearing
function ®*(x,y) for quark fields on each timeslice. To
be specific, the smeared quark field &(x,7) canbe ob-
tained by &(x,1) = ®(x,y)c’(y,1), where the duplicated

spatial coordinate y means the summation over the space
volume. Thus, the quark bilinear operators for meson
states in this study can be built in terms of the smeared
charm quark field &(x). We introduce the spatially exten-
ded operators for each channel as

or,1) = Ni Z DKL (e, x +r0e(x+1.0,  (34)

" x,rl=r

where N, is the multiplicity of r with |r| = r, and
Kg(x,x +r;0) =TPe8 [ adr - I'L(x,x+r;t) (35)

with T being the specific combination of y-matrix that
gives the right quantum number of each of the 1S and 1P
state (the explicit expressions of I''s are tabulated in
Table 2), and L(x,x +r;t) being the gauge transportation
operator from (x,7) to (x +r,7). Obviously, O(r,t) is gauge
invariant. Thus one can get the kernel function

O Ni Z Vi, DKL (x,x + 10 V(x+r1,0).  (36)

" xrl=r

Because the disconnected part is considerably smaller
than the connected part and has little effect on present
discussion, the correlation function G;;(r) can be approx-
imated by their connected part as

T-1

1
Gij(t) = 7 D (Ot +10)0(ryot0)) ~ Cif(t).  (37)

=0

where C;;(?) is the connected part

1 T-1
Cift) == D (Tr[" -+ 10)7(t+ 10.10)
1,=0
X ¢"(10)7(to, 1 +10)]). 38)

In practice, r are chosen to be spatially on-axis dis-
placements with |r|/a;=0,1,2,3,4,5,6,7. The differences
between the different operators can be monitored through
the effective masses of the corresponding correlation
functions C(¢) of the operators

C(
C@it+1)

a;Megi(1) = In (39)

a; Mg () of these operators in the 0~* channel are shown
in Fig. 4. The different ¢-behaviors of the effective mass
plateaus show the different coupling of the operators with
different |r| to different intermediate states. For a given
quantum number JC, the differences among different
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operators O; in an operator set {O;,i=1,2,...} can be re-
flected by their couplings to the orthogonal complete
state set {|n),n=1,2,...} with the normalization condition
(nlm) = Smn»

0}10)= " In)nl0] 10y = > Wi, In), (40)

where W;, =(0|0;|n) is defined. Therefore, the differ-
ences in W;, show how different the operators in this op-
erator set are, and also result in the different z-behaviors
of the effective masses M.q(¢) of the corresponding cor-
relation functions in the early time region. In each chan-
nel, we focus only on the lowest two states; therefore, we
select operators O(r,7) with r/a; =0,3,6 to compose an
operator set, which are expected to couple to the interme-

0.318
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03171 5. .3 Ponos
s { R=3
8 o0 E =
o316l ionos
b5 o ° ® : R=6
= 0.315 R bonet
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AA::;::f“!t!,
0313 PRiiiiiiiiiiyy
0'31210 15 20 25 30 35 40
t/a
Fig. 4.  (color online) Effective mass of these correlators

with different r (labelled by R =r/a;). My, labels the effect-
ive mass of the ground state optimized operator obtained from
3x3 variational analysis.

diate states more differently, as manifested by the effect-
ive masses of these correlation functions. Based on the
operator set in each channel, we first carry out the vari-
ational method analysis to obtain the optimized operators
that couple most to specific states. That is to say, we cal-
culated the correlation matrix {C;;(#)} of each operator set
and solve the generalized eigenvalue problem

Cij(Ov; = A2, 10)Cij(to)v; 41)
to get the eigenvector vf.”) that corresponds to the n-th
largest eigenvalue 17(1,1). It is expected that the operat-
or O™() = vg")O(r,-,t) couples most with the n-th lowest
state. Thus we have the correlation function C™(r) of the
optimized operator O™,

C™() = OO 0) = vV Cy),  (42)

whose effective mass function a,Mé'f'f)(t) can be defined
similarly to Eq. (39). a,Mé;‘F)(t) functions for n=1,2 for
all the channels are plotted in Fig. 5 (ensemble E£1) and
Fig. 6 (ensemble E2). a,Mgf)(t) and a,Mgf)(t) are clearly
separated from each other, but still have mild time de-
pendence in the early time range due to slight contamina-
tion from higher states. In order to obtain the mass val-

ues more precisely, we perform two-mass-term fits to
C(r)

CO() = Wy (e +eMT) 1 W, (7 e T0) | (43)
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Fig. 5. (color online) The mass plateaus of the correlation functions of the optimized operators obtained through GEVP method on

gauge ensemble E1. In each of the six channels J°¢ =07+, 177, (0,1,2)** and 1~*, the mass plateaus corresponding to the lowest two

states are shown. For each correlation function, a two-mass-term fit is performed with the second mass term being introduced to take

into account the residual contamination of higher states. The darker colored bands illustrate the fit results using the corresponding time

window.
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Fig. 6. (color online) The mass plateaus of the correlation functions of the optimized operators obtained through GEVP method on

gauge ensemble E2. In each of the six channels J*¢ =07+, 177, (0,1,2)** and 1~*, the mass plateaus corresponding to the lowest two
states are shown. For each correlation function, a two-mass-term fit is performed with the second mass term being introduced to take
intoaccounttheresidual contamination ofhigherstates. The darker coloredbands illustrate the fitresultsusing the corresponding time window.

where the second mass term is adopted to account for the
higher state contamination. W; and W, are coefficients of
the first mass term and the second mass term respect-
ively. The fit results with the fitted parameters are also
plotted in Fig. 5 and Fig. 6 as curves with error bands,
where the extensions of the curves illustrate the fit win-
dows. For all the fits, the values of the y? per degree of
freedom (y?/dof) are around one and exhibit the fit qual-
ity. The fitted masses of 1P, 2P charmonium states are
tabulated in Table 4, in which the experimental values are
also given for comparison.

The non-relativistic quark model expects that for the
same principal quantum number 7, the n*S*!'L; multiplet
with § =1 and L # 0 has a 'center of gravity' mass Mcog,
which is the spin average mass of this multiplet and
should be equal to the mass of the spin singlet counter-
part (the derivation of the relation can be found in the Ap-
pendix A). For example, for the L =1 multiplets nP;
multiplet, Mcog is defined as

Mcog(nP) =é [5M(n* P) + 3M(n* P1) + M(n* Po) .

=M(n'Py). (44)
As shown in Table 4, the masses of the 1P states are de-
termined very precisely with the statistical error being
less than 1 MeV, so we can check the relation of Eq. (44).
The difference between the Mcog(nP) and the mass of
the spin singlet h.(nP) is sometimes called the hyperfine
splitting of nP charmonium states, which is denoted by
AHFs(nP) = AHFS = Mhl (nP) - MCOG(I’lP) in this study. On
the two ensembles (E£1 and E2) in this paper, we obtain
Agrs(1P) as

El: Agps(1P)=0.8+0.8 MeV,
E2: Agrs(1P)=—-0.9+1.0MeV. (45)
In other words, the relation Eq. (44) is satisfied for 1P
states with a high precision. For 2P states, we have

El: Aprs(2P)=49+7 MeV,

E2: Agps(2P) =57 +9 MeV. (46)
There is a substantial deviation from Eq. (44). We are not
sure of the reason for this deviation yet. It is possible that
2P charmonium states do have a non-zero hyperfine split-
ting. It is also possible that the masses of 2P states are not
determined precisely enough. This should be explored in
future studies.

It is interesting to note that the experimental results
support the relation of Eq. (44) to a very high precision
[2]. For charmonium systems, the 1P states (h.(1'P;),
Xc0.12(13Po 1 2)) have been well established. According to
the PDG data, the 'center of gravity' mass of 1P charmo-
nia is Mcog = 3525.3(1) MeV, which is almost the same
as the h. mass M(h.) =3525.4(1) MeV. For bottomium
systems, the 1P and 2P states are below the BB threshold
and have very small widths. They are approximately
stable particles and have direct correspondence to the ac-
cording states predicted by the non-relativistic quark
model. The Mcog(1P) =9899.9(5) MeV and Mcog(2P) =
10260.3(6) also reporduce the h,(1P) mass M(hy(1P)) =
9899.3(8) MeV and the h,(2P) mass M(h,(2P)) =
10259.8(1.2) MeV.

If the relation described by Eq. (44) is somewhat uni-
versal, we can use it to make a prediction of the mass of
h.(2P). Experimentally, there are three particles being as-
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Table 4.

The masses of 1P and 2P states derived from ensemble £1 and £2. The masses are converted into the values in physical

units. The 'center of gravity' masses are the spin averages of the spin-triplet nP charmonium masses. The experimental results are also

presented for comparison.

JPe x0) K xHer) h(1+) meoG
El M(1P)(MeV) 3039.1(4) 3083.8(6) 3109.7(6) 3094.0(7) 3093.2(4)
M(2P)(MeV) 3410(4) 3412(7) 3531(8) 3526(5) 3478(5)
E2 M(1P)(MeV) 3391.8(6) 3433.8(9) 3461.8(7) 3443.8(9) 3444.7(5)
M@2P)(MeV) 3785(6) 3792(9) 3916(11) 3917(6) 3860(6)
Exp. M(1P)(MeV) 3414.7(3) 3510.7(1) 3556.2(1) 3525.4(1) 3525.31(7)
MQ2P)(MeV) 3862(51) 3871.7(1) 3922(1) 3898(6)

signed to be the candidates of the y. 1. charmonia,
which are y/ (3872) (the old X(3872)), x/,(3930) and
X.,(3860), while there is no experimental evidence of #;
yet. The resonance parameters of these three states are

X.0(3860) : Mg =3860(50)MeV, T'z ~200 MeV,
X1 (3872): Mgr=3871.72)MeV, Tr < 1.2 MeV,
X10(3930) 1 Mg =3922(1)MeV, TI'g =35(3) MeV. (47)

X.(3860)'s width is large, while those of the other two
states are relatively small. Using Eq. (44), the mass of
h.(2P) can be tentatively estimated to be

M(h(2P)) = Mcog(2P) ~ 3898(6) MeV. (48)

V. SOME CAVEATS

We would like to point out the possible caveats of our
lattice setup. As we addressed in Sec. II, the tadpole im-
proved tree level clover action proposed by the Hadron
Spectrum Collaboration was adopted for charm quarks in
this study [17, 18]. Our calculation shows that the hyper-
fine splitting Aurs = My — M, is approximately 60 MeV
for the two ensembles E1 and E2. This is obviously very
far from the experimental value Agps = 113(3) MeV, and
signals large discretization errors. The Hadron Spectrum
Collaboration also found this large discrepancy in its cal-
culation of the charmonium spectrum [24], where
Aprs = 80(2) MeV was obtained. This discrepancy might
be attributed to clover term o, F,,¢ of the fermion ac-
tion, which results in the spin-orbital and spin-spin inter-
actions between the charm quark and antiquark in the
non-relativistic approximation. It is found [24] that a lar-
ger coefficient of the spatial clover term oy Fy o -B
can give a larger Agrs. On the other hand, even though
the masses of the 1P and 2P charmonium states are de-
termined very precisely in this work (see Table 4), it is
obvious that the fine splittings between the 1P states are
also smaller than those of the experimental values. In the

non-relativistic approximation, these splittings are due to
the spin-orbital and the tensor interactions [15] (also in
Appendix A). The under-determined splittings in this
work may imply that the coefficient of the temporal
clover term o F,; < o- E of the fermion action also has
large discretization uncertainties. It may also because we
ignored light u,d,s quarks. Based on these observations, it
seems that the fermion action we adopt in this work may
not be a very good anisotropic version for charm quarks.
It is noted that another version of the clover fermion ac-
tion on the anisotropic lattices [25, 26] can produce a lar-
ger Aggs [27-29]. Of course, whatever the lattice setup is,
the continuum limit should be the same, but the smaller
the discretization uncertainties, the smaller the systemat-
ic errors are after the continuum extrapolation.

VI. SUMMARY

In this work, we generate gauge ensembles with two
flavor degenerate dynamical charm quarks on anisotropic
lattices. This lattice setup enables us to investigate the
contribution of charm quark annihilation diagrams to
charmonium masses in a unitary theoretical framework
for charm quarks. The distillation method is adopted to
realize both the smearing scheme of quark fields and the
disconnected diagrams in calculating meson correlation
functions. With large statistics, the effects of disconnec-
ted diagrams can be derived with a high precision.

For a given quantum number J¢, the mass shift of
charmonium masses due to the disconnected diagrams
can be derived from the ratio R(7) of the disconnected part
of the charmonium correlation function to the connected
part. It is found that the R(r) ratios are relatively large for
the scalar and the pseudoscalar channel, and the time de-
pendence of R(¢) implies that there may be a contribution
from states lighter than the corresponding lowest char-
monium states to the correlation functions when the dis-
connected diagrams are considered. This is not surprising
since glueballs can appear as intermediate states in this
case, whose masses are predicted by lattice QCD to be
lower than charmonium states. By considering the contri-
bution of glueballs, the mass shift of the ground state
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pseudoscalar charmonium 7, is +3.0(1) MeV and +3.1(2)
MeV, respectively, for the two gauge ensembles in-
volved, which is consistent with the previous result in
Ref. [13]. These values are also consistent with mass shift
3.9(9) MeV derived from the glueball-charmonium mix-
ing mechanism [23]. For the scalar charmonium y., we
cannot get a reliable result of the mass shift yet. The con-
tribution of the charm quark annihilation effect to the J/y
mass is very tiny as expected by the OZI rule, since the
two charm quark loops are mediated by at least three in-
termediate gluons. For y.; and A, the mass shifts due to
the charm annihilation effect are approximately 1 MeV,
which are smaller than that of .. This is understandable
since the contribution of two-gluon intermediate states is
suppressed to some extent due to the Landau-Yang theor-
em [19, 20]. It is surprising that this kind of mass shift of
X2 1s relatively large and negative (—3.0(3) MeV for El
and —2.8(2) for E2). We don't have an explanation for this
yet. Lattice QCD studies predict that the lowest tensor
glueball mass is approximately 2.2-2.4 GeV [8-10, 21,
22], which is lower than the y., mass and should result in
a positive mass shift if y., and the tensor glueball can
mix. Note that in this study we only consider the charm
sea quark effects and the effects of u,d, s quarks have not
been taken into consideration yet, which are expected the-
oretically to affect the mass spectrum of charmonia also
[7]. In the presence of u,d,s quarks, the situation will be
much more complicated due to charmoniums decays and
appearance of light hadron intermediate states. Therefore,
the study of their impact on charmonium masses is still a
challenging task in the present stage of lattice QCD.

The relation Mcog(nP) = M), (nP) is expected by the
non-relativistic quark model. We observe that this rela-
tion is satisfied to a very high precision level for 1P char-
monia, namely Mcog(1P)— M, (1P)=0.8+0.8 MeV and
0.9+ 1.0 MeV at the two charm quark masses used in this
work. For the 2P charmonia, we observe a large devi-
ation from this relation. There are two possible reasons
for this deviation: this relation actually does not hold for
2P states, or the masses of the 2P states derived in this
work have contaminations from higher states. This should
be explored in future studies. On the other hand, for the
two charm quark masses, the mass splittings between the
1P and 2P charmonium we obtained are smaller than
those of the non-relativistic quark model predictions [30,
31], but consistent with experimental results, given the
assignment that y’(3860), x’,(3872) and x/,(3930) are
2P charmonium states.
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APPENDIX A: 'CENTER OF GRAVITY' MASS OF
HEAVY QUARKONIA

In the quark model picture, the spectroscopy of char-
monia can be studied by solving the non-relativistic
Schrodinger equation of bound states with QCD-inspired
inter-quark potentials V(r) along with the relativistic cor-
rections. To order v? ~ p*>/m?, where v is the velocity of
the (anti-)charm quark with mass m within a bound state,
the generalized Breit-Fermi Hamiltonian [15] is

P 1
H=2m+———p*+V(r)
m  4m3
+HSI+HL5+H55+HT, (Al)

where Hg is the spin-independent interaction term whose
explicit form is irrelevant to the discussion here and is
omitted, Hygs is the term for the spin-obital coupling, Hss
is the spin-spin interaction term, and Hr is the tensor in-
teraction part. If the potential V(r) can be split into the
vector-like part Vy(r) and scalar-like part Vs(r), the expli-
cit expressions of Hy g, Hss and Hy are

1 d d
His ==—(3—=Vv—-—Vs|L-S,
kS 2m2r( ar V7 dr S)

2
Hss =——51-$,V> Wy (r),

3m
T=12;12 (%%VV_;%VV)SIZ’ (A2)
with
Sy = 12(%—151 'Sz), (A3)
r 3

where S;, arethe spins of the charm quark and anti-
quark, and S = S; + 8, is their total spin. For a given state
in terms of the eigenvalues S, L, J of S, the orbital mo-
mentum L and the total angular momentum J = L+ S, the
expectation value (L -S) reads

(L-S) = %[J(]+1)—L(L+1)—S(S+l)]. (A4)

Obviously this expectation value for L=0 or S =0
states vanishes. It is easy to see that the expectation value
of S, also vanishes for L =0 or S = 0. Otherwise the ex-
pectation value of S, reads
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4

S = Grmer-n

(S?L* - %(L-S) —3(L-S>2}.
(A5)

As for the spin-spin interaction, if the Vy(r) is taken to be
Coulomb-like, namely, Vy o 1/r, then Hsg oc 63(r)S -S>
is actually a contact interaction, whose expectation value
vanishes for L # 0 states, since their radial wave function
¢.(r) at the origin r=0 is zero. For L =0 states (n'S
and n3S states), the spin-spin interaction results in the
hyperfine splitting AMyg between the spin triplet and
spin singlet S states.

The values of (L-S) and (S») for S =1 and L#0
states are listed in Table Al. It is easy to see that for a
n’L; super-multiplet with J = L—1, L, L+1, one has

Table A1. The expectation values of (L-S) and (S,) for
S =1 and L # 0 states.
J L-1 L L+1
(L-S); —(L+1) -1 L
2(L+1) 2L
S _ _
S12) 201 2 2L+3

Therefore, if one introduces a 'center of gravity' mass
Mcog(nL) for n®L; states,

Mcoc =

30LTT) 2L 0 Z(zu 1)M;(nL), (A7)

which is the spin averaged mass weighted by the number
of polarizations, one should have

Mcog = My(n'Ly), (A8)

where My (n'Ly) is the mass of the spin singlet state of nL
supermultiplet.

(L-8)avg = 3(2L 1)2(2J+1)<L S), =0,
(S 12)avg = 3(2L Z(zulxslzn— (A6)
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