Chinese Physics C  Vol. 46, No. 4 (2022) 044103

A neural network approach based on more input neurons
to predict nuclear mass”

Tian-Liang Zhao(#% K-25)'

Hong-Fei Zhang(i18 &)"*"

'School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
*School of Physics, Xi'an Jiaotong University, Xi'an 710049, China

Abstract: The study of nuclear mass is very important, and the neural network (NN) approach can be used to im-

prove the prediction of nuclear mass for various models. Considering the number of valence nucleons of protons and

neutrons separately in the input quantity of the NN model, the root-mean-square deviation of binding energy
between data from AME2016 and liquid drop model calculations for 2314 nuclei was reduced from 2.385 MeV to
0.203 MeV. In addition, some defects in the Weizsdcker—Skyrme (WS)-type model were repaired, which well repro-

duced the two-neutron separation energy of the nucleus synthesized recently by RIKEN RI Beam Factory [Phys.

Rev. Lett. 125, (2020) 122501]. The masses of some of the new nuclei appearing in the latest atomic mass evalu-

ation (AME2020) are also well reproduced. However, the results of neural network methods for predicting the de-

scription of regions far from known atomic nuclei need to be further improved. This study shows that such a statist-
ical model can be a tool for systematic searching of nuclei beyond existing experimental data.
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I. INTRODUCTION

Many properties of atomic nuclei are very sensitive to
their binding energy (or mass), such as half-lives and re-
action rates. Therefore, physicists need to refine the the-
oretical model of the nucleus as much as possible to re-
produce the experimental mass of the nucleus and to
achieve the highest possible accuracy in predicting the
nuclear mass. In 1932, the existence of the neutron was
experimentally confirmed, and later it was proposed that
anucleus consists of positively charged protons and un-
charged neutrons. Protons and neutrons (collectively
known as nucleons) are bound to a very small volume,
and thus begin the study of the structure of the nucleus.
Because nucleus and nucleons are at the Fermi scale, it is
believed that nucleons are closely arranged in the nucle-
us, so the liquid-drop model (LDM) of the nucleus was
proposed. The LDM was first proposed by Gamow, then
Weizsicker and Bethe proposed a semi-empirical for-
mula for calculating the binding energy of nuclei [1, 2].
Although such a description is approximate, it provides
the basis for a more accurate description of the binding
energy of the nucleus.

The LDM of the nucleus has been a great success in
many ways, including describing fission of the nucleus.

But many of the experimental data cannot be explained
by the LDM. It is found that, similar to the change of
atomic properties with the number of electrons in the
atom, there are magic numbers in the properties of the
nucleus with the number of neutrons and protons. This
means that one nucleon in the nucleus moves in a differ-
ent orbit in the mean field provided by the other nuclei.
The magic number of protons and neutrons in the nucle-
us is successfully explained by the spherical simple har-
monic oscillator potential with strong spin orbital coup-
ling terms [3, 4]. This model can also explain the spin and
parity of the ground state of the nucleus, as well as some
experimental data of the electromagnetic transition from
the excited state to the ground state of the nucleus. This is
the shell model of the nucleus. M.G. Mayer and J.H.D.
Jensen founded the shell model in 1949 [3, 4], for which
they shared with Wigner the 1963 Nobel Prize in Physics.
The shell model can well reflect the shell structure of
the nuclear energy levels, and can explain the magic
numbers in experiments by the single particle motion in
the mean field. The order of single particle energy levels
and the phenomenon of shell splitting are explained.
However, the shell model has some limitations and the
reliability of the extrapolation has yet to be verified.
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Combining the advantages of these two models, Strut-
insky proposed a method of calculating shell corrections
[5, 6]. Based on this method, macroscopic—microscopic
models (MMM) are developed. MMM mainly include the
Finite-range droplet model (FRDM) [7, 8], the
Koura—Tachibana—Uno—Yamada mass formula (KTUY)
[9], Lublin Strasbourg drop (LSD) [10], and the
Weizsdcker —Skyrme (WS) mass formula (WS3.2 [11],
WS3.3 [12], WS3.6 [13] and WS4 [14]). These models
help us understand the nature of the strong nuclear force.
However, we still cannot precisely calculate many ques-
tions about the structure of atomic nuclei, such as: How
to determine the center of the superheavy stable island?
How to calculate the magic number away from the beta
stable line? What are the limits of nuclear existence? In
addition to these problems, the mass of the nucleus is also
very important in the study of nuclear astrophysics. It is
difficult to answer these questions at present, because we
need to predict unknown nuclei. The results of these
models tend to be consistent in the known regions of the
nucleus, but there are usually serious differences when
they are far away from the known regions [15]. This may
be because the shell correction energy calculation meth-
od is not applicable in some regions. It may also be be-
cause the current model ignores some unknown physical
effects.

In recent years, artificial neural networks (ANN) have
been widely used in various fields and successfully
solved many complex problems [16—29]. The advantage
of the NN approach is that there is no need to give an ex-
plicit relationship between the input and output data.
ANN has the ability to learn and construct models of non-
linear and complex relationships. The main purpose of
this study is to demonstrate the success of an ANN in de-
scribing the energy of the ground state of unknown nuc-
lei with known data.

In this paper we consider increasing the number of
valence nucleons and the number of holes based on
spherical shell closure in the nucleus as input quantities to
reproduce the effect of the rise and fall of the binding en-
ergy of the nucleus. New nuclear binding energies can be
verified in AME2020. The two neutron separation ener-
gies of the nuclei synthesized recently at the RIKEN RI
Beam Factory are also calculated [30].

II. THEORETICAL FRAMEWORK

In MMM, the binding energy of the nucleus is ex-
pressed in two parts: the macroscopic liquid-drop part
and the microscopic shell correction part. The simplest
macroscopic expression is derived from the LDM, which
can well explain the variation of nuclear binding energy
except for a small deviation. According to the Strutinsky
energy theory, the fluctuation of nuclear binding energy
is provided by shell correction energy. Based on this idea,

we also express the binding energy of the nucleus as the
sum of the two parts of the energy

B(Z,A)p by = ELom(Z,A) +6BL S, (1)

Unlike normal MMM, the macroscopic part of the en-
ergy does not take into account the deformation of the
nucleus. Instead, the deformation energy, the shell correc-
tion energy and other energies are obtained using the NN
approach. The energy of the liquid-drop can be ex-
pressed as

Eipm =av(1 +kyI?)A +as(1 + ksI*)A?3

z? 211
+ac——=(1-Z")+c
ac 4173’ A

PA+ apairA_l/36nps

2)

where Z and 4 are the proton and mass numbers, respect-
ively. I=(A-2Z)/A is the charge-asymmetry parameter
of the nucleus. The meanings of the terms in the formula
are volume energy, surface energy, Coulomb energy,
symmetric energy and average pair energy. d,, is ex-
pressed as [11]

2 —|I|, for even—Z, even—N,
|1|, for odd—Z, odd—N,

1—11|, for odd—Z, even— N and N > Z,

1—|1|, foreven—Z, odd—N and N < Z,
1, for odd—Z, even—N and N < Z,
1, for even—Z, odd—N and N > Z.

Sup =

The parameters in Eq. (2) are obtained by fitting the
binding energy in AME2016 [31]. We select 2314 nuclei
with the number of protons and neutrons greater than or
equal to 8 and the error of mass measurement less than or
equal to 150 keV [32]. The fitting results are listed in
Table 1.1t can be seen that the root-mean-square devi-
ation (RMSD) after fitting is 2.385 MeV. In Fig. 1, we
use black solid circles to represent the deviation between

Table 1. Model parameters of the LDM.
Parameter Value
ay —15.6670
ky 2.0219
as 18.4334
ks —3.1785
ac 0.7153
(&1 44.5756
Apair —6.8522
o/MeV 2.385
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Fig. 1. (color online) Deviation of theoretical calculation of

binding energy from experimental values. Black solid circles
are the deviation between the LDM result and the experiment-
al value, and red solid squares are the modified results using
the NN approach.

the binding energy calculated by the LDM and the experi-
mental values. This deviation is small relative to the total
binding energy. But for the study of nuclear physics, such
as nuclear astrophysics, nuclear reactions, decay energy
of the nucleus and so on, such precision is far from
enough. Next, we will introduce a NN approach to im-
prove the precision of the LDM.

The ANN approach is a mathematical model that sim-
ulates brain function. A neuron takes one input, performs
some mathematical operation, and then produces an out-
put. In our calculation, we use a feedforward neural net-
work. Feedforward neural networks adopt a unidirection-
al multi-layer structure. Each layer contains several neur-
ons. In this NN model, each neuron can receive the sig-
nal from the previous layer and produce output to the
next layer.

In an NN approach for nuclear binding energy, there
are usually two input neurons, the number of protons Z
and the number of nucleons 4 [22]. As for the LDM, the
results can be approximated by the MMM after training.
To get more accurate results, more physical information
needs to be included in the input terms of the NN ap-
proach. In Ref. [23], the distance between the proton and
neutron to the nearest magic number is taken into ac-
count in the input neurons. In Ref. [24], the pairing and
shell effects are added to the input neurons, producing
better results. It can be seen from literature that better res-
ults can be obtained by adding effective information as
input neurons.

In Refs. [23, 24], only the shell contributions closest
to the proton and neutron magic numbers are considered
in the input neurons. But we think that between the two
shells, the previous magic number and the next magic

number both contribute to the energy of the nucleus. So
in this contribution, the NN model is constructed with an
input layer including six input neurons (proton number Z,
mass number A, valence nucleus and hole number of
neutrons (|N — Ny| and [N, — N|, and valence nucleus and
hole number of protons |Z-Zy| and |Z; —Z|), a hidden
layer, and an output layer (6BLY,). Zo(8, 20, 50 and 82)
and Z; (20, 50, 82 and 126) here represent the number of
protons in a given nucleus at the radius of the last magic
number and the next magic number. Ny(8, 20, 50, 82 and
126) and N;(20, 50, 82, 126 and 184) are the same num-
bers for neutrons. For example, for ggFem, the inputs are,
in turn 26, 56, 10 (30-20), 20 (50-30), 6 (26-20) and 24
(50-26). Since there is no prior indication to determine
the number of neurons H in the optimal hidden layer,
some considerations are used to determine the optimal
choice. After many attempts, the number of neurons in
the hidden layer was set at 40. The output layer of the NN
model contains a neuron that represents the expected de-
viation of the nuclear binding energy. The structure of the
NN model in this study is shown in Fig. 2.

We can use a function that expresses the relationship
between the input and output for an ANN with a vector
input x (x,x2, ..., x¢) and an output scalar y. It can be writ-
ten as [22]:

H n
y=a+ijtanh[cj+Zdﬁx,-]. 3)
j=1 i=1

where the free parameters are w = (a,bj,cj,d;;); H is the
number of neurons in the hidden layer; » is the input unit
number; x; is the ith input unit; d;; is the weight paramet-
er between the ith input unit and the jth hidden neuron:
c; is the bias of the jth hidden neuron; b; is the weight
parameter between the jth hidden neuron and the output
neuron; and aisthe bias of the outputneuron. For the six input

input layer hidden layer

@

output layer

N,-N
2-2,

2,2
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\
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Fig. 2. (color online) A feedforward neural network consist-
ing of six input neurons, a hidden layer and an output neuron.
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variables, the function in Eq. (3) has 1 + (2+n)H parameters.
Our goal is to obtain the minimum RMSD, so weights
and biases need to be adjusted during training. In the
learning stage of this work, we used a back propagation
algorithm with Levenberg—Marquardt (LM) to change the
connections between neurons so as to obtain the consist-
ency between the neural network output and the expected
output [33-35]. The LM algorithm is an iterative al-
gorithm that can be used to solve the least square prob-
lem. The weight calculation formula of LM is as follows:

Wit] = w,'—(]lTJ,‘-}-ﬂiI)_l]iTei, 4)

where w;,; is a trial solution estimated by the ith itera-
tion solution. J is the Jacobian matrix of output error. / is
the identity matrix. u is a learning parameter (so called
LM parameter). LM parameters have good operability
and controllability, making the algorithm more stable and
reliable. Now we can train the difference between the
binding energy of the LDM and the experimental values.
To illustrate the advantages of the six inputs (marked as
SBNNCS), we also compare the results using four input
neurons (there are three cases with four inputs: (D
Z, A, Z-Zy,N - Ny, marked as 6BYN " @ Z, A, Z - Z,

Ny —N, marked as 6B}5"™; @ Z, A, min(Z-Zy,Z, - 2),

min(N — Ny, N; — N), marked as 6BYJ-*) and using two in-

puts (Z, A, marked as §B}'N-2), which will be discussed in

detail in the next section.

1. RESULTS AND DISCUSSION

Based on the previous instructions, we can now calcu-
late the binding energy of the nuclei using the NN ap-
proach. Previously, we used 2314 nuclei experimental
data from AME2016 to fit the parameters of Eq. (2). Us-
ing the NN method to train, the data should be divided in-
to two parts, a learning set and a verification set. We ran-
domly selected 414 experimental data as the verification
set, and the remaining 1900 data as the learning set. The
effect of hyperparameters can be removed by human ad-
justment. When the hidden layer neurons are fixed, we
can tune the neural network model by adjusting the learn-
ing rate and the number of training sessions. For differ-
ent input neurons, we can always find a suitable set of hy-
perparameters, but these hyperparameter sets are differ-
ent. When the minimum root mean square deviation of
the validation group occurs during the training process,
the result at this point is considered to be the best result,
rather than the minimum overall RMSD. This prevents
over-fitting results. It should be noted that we have tried
random selection several times and found little change.
Here's the best one.

After using the NN approach, the RMSD of the LDM
decreased significantly, especially when six input neur-

ons were considered. The RMSD decreased from 2.385 to
0.203 MeV. The difference between the experimental
binding energy and the corresponding calculated binding
energy is shown in Fig. 1. In Table 2, we list the results
of the NN method learning for the five variable input sets.
From Table 2, we can clearly see that it is not sufficient
to consider the effect of only one magic number on the
shell correction. In all cases, the results with four inputs
are not as good as with six inputs. We also show in Figs.
3-5 for each case how much the NN method results devi-
ated from the experimental values. From Fig. 3 we can
see, for nuclei near the magic number and nuclei in the
light nucleus area, when only using the proton number
and the mass number as input neurons in the NN method,
the effect of the correction is poor. The reason is that
shell effects are not taken into account. This situation is
improved after considering the shell effect. From Fig. 4,
we can see that the results have significantly improved.
But there are still a lot of highly deviated nuclei in the
light nucleus area. This is also a problem that MMM
needs to solve. The present results can be significantly

Table 2. RMSD (MeV) of binding energy in light nuclei re-
gion calculated by different models.
Model Opre/MeV onN/MeV Ao (%)
BNNC2 2.388 0.383 83.96
BN 2.388 0.235 90.16
Learning set BN 2.388 0.231 90.33
BN 2.388 0.216 90.95
BNN6 2.388 0.196 91.79
BNN? 2.375 0.386 83.75
By 2375 0.275 88.42
Validation set B\ 2.375 0.255 89.26
BN 2.375 0.246 89.64
BNN6 2.375 0.231 90.27
I ! I ! I ! I ! I
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Fig. 3. (color online) Deviation with two input neurons.
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Fig. 4. (color online) Deviation of three results with four in-

put neurons.

improved by using the NN method. Table 3 gives the ac-
curacy of the description of the experimental masses by
each of the models for five regions of nuclei: global
(Z, N =8), light (8<Z<28,N3>38), medium-I
(28<Z<50), medium-II (50<Z<82), and heavy
(Z > 82) nuclei.

One can see in Table 3 that for each region of the
nuclear chart, the RMSD changes quite strongly from one
model to another. A strong dependence of the accuracy of
the description of the mass on the region of nuclei con-
sidered is obtained for each model. In all regions con-

T T T T T T T T H
100 F 5 E(MeV) =
o 80
[}
Q
El
j=]
= 60
=
(e}
e}
° 40t
[a
20 I
O ""_7‘ ‘ L L L L L L L L L L L 77\’”””\7
20 40 60 80 100 120 140 160
Neutron number
Fig. 5. (color online) Deviation with six input neurons.

sidered, the best accuracy is obtained by the BNJ-6. One
also can see similar patterns to the MMM of the shell cor-
rection calculated by the Strutinsky method. The im-
proved result of the NN method for heavy nuclei is more
obvious. If the shell effect is not considered in the input
neurons, the correction results in the light nucleus region
are poor. Different considerations in input would bring
different results. From Table 3, we can clearly find that
the shell closer to the nucleus has a greater impact on the
nucleus, which is in line with the physical situation.
However, if the input neurons are also considered to be a
more distant shell, the results can be improved.

Since the correction results of the NN method have
such high accuracy for nuclei with known experimental
binding energy, we should also verify the reliability of
the NN method's extrapolation. Recently, the RIKEN RI
Beam Factory used the time-of-flight magnetic rigidity
technique to direct mass measurements of neutron-rich
scandium, titanium and vanadium isotopes around the
neutron number 40. The experimental results show that
the two-neutron separation energy near *Ti is increased
compared with adjacent nuclei. In Ref. [30], we can find
that the LZU model [36] has a slightly lower description
of the two-neutron separation energy near *Ti. WS4RBF
[14] also gives a similar result to LZU. In WS-type mod-
el [11- 14, 36], the macroscopic part is expressed as
E;pJlQ +bkﬁi) and the microscopic part is the shell cor-
rection calculated by the Strutinsky method. The above
parabolic approximation to the change of macroscopic
energies with By(k = 2,3....) is acceptable near the ground
state. In Ref. [21], R. Utama used a Bayesian NN ap-
proach to refine the Duflo —Zuker (DZ) model and the
Hartree—Fock—Bogoliubov gHFB) nég)del. The two-neut-
ron separation energies in ~ Ti and ~Ti are also smaller
than the experimental values in DZ-BNN and HFB-BNN
[21]. To verify the extrapolation ability of the NN meth-
od proposed in this paper, in addition to the RMSD, we
also calculated the double neutron separation energy
measured in Ref. [30]. The result of the calculation is
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Table 3. RMSD (MeV) calculated for the global (Z,N > 8), light (8 <Z <28,N > 8), medium-I (28 < Z < 50), medium-II (50 < Z < 82),
and heavy (Z > 82) nuclei, with the use of the specified models.
Model LDM BNN-2 BN Bios BN BN WS4 [14] FRDM [8] KTUY [9]
Global
RMSD 2.385 0.384 0.242 0.236 0.221 0.203 0.288 0.584 0.704
Light
RMSD 1.58 0.86 0.44 0.42 0.41 0.35 0.42 1.11 0.69
Medium-1
RMSD 2.47 0.35 0.25 0.24 0.23 0.22 0.30 0.62 0.78
Medium-II
RMSD 2.32 0.21 0.18 0.17 0.15 0.15 0.25 0.37 0.54
Heavy
RMSD 2.79 0.25 0.15 0.16 0.15 0.13 0.24 0.37 0.88

shown in Fig. 6. As we can see in Fig. 6, compared with
several other methods, NN-6 has a clear advantage, both
in terms of trend and value. We have therefore chosen to
compare the results of the two-neutron separation energy
calculated by NN-6 with those of the LZU model. The
results are plotted in Fig. 7. The experimental results and
error bars are given in solid circles. The settlement result
of the NN method is a solid square, and the dotted line
represents the calculation result of the LZU model. From
Fig. 7, we can clearly see that the computational results
of the NN method reproduce the experimental values

3k

.

—=— Ref[30]] ®
NN-2
NN-4LS
NN-4NS
NN—4
NN-6

very well, especially in *'Ti and “Ti. It should be noted 34 36
that there is a large error in the experimental two neutron
separation energy of ~ Sc, and our result also has a large Fig. 6.

deviation from the e)éperimental result. We believe that
the shell effect like “’Ti should occur when the neutron
number approaches N =40 and scandium is no exception.

Therefore, we believe that more accurate experimental | |
measurement is needed for “’Sc. Other than that, almost ’ I i
all the other data falls within the error bar. We also listed 8  f- i % g
the comparison between the binding energy of Ti in Ref. i ‘;L T ii% v
[30] and the calculation results of different models in = 7? N e -
Table 4. It can be seen that the trained NN model gives S6h - . : |
the best results. S 1 [ RefD3o0] '} 911

In addition, the latest quality assessment data, 5r = B ' l b
AME2020 [37], has been published. To further verify 4; ””” LU ,1Sc i
whether the work in this paper has extrapolation ability, | J
we selected 78 updated nuclear binding energies from 3F :
AME2020. The selected nuclei are either marked with 3‘4 ‘ 3‘6 3‘8 4‘0 o
#(value and uncertainty derived not from purely experi- Neutron number
mental data, but at least partly from the trends from the Fig. 7. (color online) Two-neutron separation energy calcu-

mass surface) or have a deviation greater than 150 keV in
AME2016. Similar to the previous discussion, we classi-
fied these nuclei into global (Z, N = 8), light (8 <Z <28,
N > 8), medium-I (28 < Z < 50), medium-II (50 < Z < 82),
and heavy (Z > 82) nuclei. For BNN-6, their RMSD were

LDM >
global nuclei (78) 0.455 MeV, light nuclei (23) 0.607

38

36 38 40
Neutron number

38

40

(color online) Two-neutron separation energy calcu-

lated by using the different NN approaches compared with the
results in Ref. [30].

lated by using the NN approach compared with the results in
Ref. [30]. The solid circle is the experimental value in Ref.
[30], the solid square is the calculation result of the work in
this paper, and the dashed line is the calculation result of the
LZU model. Different colors are used to represent different
isotopic chains.
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Table 4. Comparison of Ti isotopic chain binding energies Table 5. Comparison of a decay energy calculated using the
(MeV) calculated by different models. NN method with experimental values.

Model ~ Ref.[30]  AME2016  BNN-6 WS4 LzZU Z A Q. (Our work) Q. (Ref. [38]) é
627y 496.51 495.69 496.12  495.03  495.09 118 294 12.47 11.82 0.65
61y 491.32 491.48 49132 491.10  491.27 117 294 12.06 1118 0.88
60 489.17 489.42 489.07 48937 48933 117 293 1244 1132 1.12
SO 484.20 484.51 48430 48499  484.84 16 293 11.95 1071 1.24
S8y 481.87 482.04 48208 48275  482.44 16 292 12.36 10.78 158

116 291 12.64 10.89 1.75
) ) . 116 290 12.80 11.00 1.80
MeV, medium-I nuclei (11) 0.323 Mey, medium-II nuc- s 290 . 1041 500
lei (28) 0.424 MeV and heavy nuclei (16) 0.303 MeV.
For BNN7, ngl\_f“, ngl\_f”s and BNN!, their RMSD of s 289 1249 10.49 200
global nuclei (78) were 0.677, 0.513, 0.426 and 0.605 s 288 1247 1065 1.82
MeV, respectively. Although the accuracy of the predic- 115 287 12.38 10.76 1.62
tion is not as high as previous predictions, the results are 114 289 12.06 9.98 2.08
acceptable. These results prove that the prediction of the 114 288 12.07 10.07 2.00
modiﬁ(?d model by the NN method is relatively reliable in 114 287 11.97 1017 1.80
the region near the known nucleus. o 114 286 83 1035 148

NN-6 has more parameters. In order to eliminate the
influence of parameter number, we increase the number 14 285 .72 1056 1.16
of hidden neurons in NN-4 (H = 54). In this way, NN-6 113 286 11.37 9.79 1.58
and NN-4 (H = 54) are close in number of parameters, 113 285 11.21 10.01 1.20
and the results are calculated and compared (the data in 113 284 11.12 10.12 1.00
parentheses are the results for NN-6). For NN-4 (H = 54), 113 283 11.10 1038 072
the. tgtal RMSD is 0.209 (0.203) MeV, the RMSD of the 3 %0 16 1078 0.38
training set is 0.201 (0.196) MeV and the RMSD of the
validation set is 0.241 (0.231) MeV, 0.39 (0.35) MeV for tz 28 10.70 932 1.38
the light nucleus region, 0.21 (0.22) MeV for Medium-I, 112 283 10.49 9.66 0.83
0.15 (0.15) MeV for Medium-II, and 0.14 (0.13) MeV for 112 281 10.63 10.45 0.18
the heavy nucleus region. For the 78 nuclei added in 111 282 9.85 9.16 0.69
AME2020, the RMSD is 0.?64 (0.455) MeV. The com- 11 281 992 9.41 051
putational results show that increasing the number of hid- i 250 oy 10.15 —0.07
den layer neurons does reduce the total RMSD. Although
the bias between the validation and training sets becomes t 279 10.28 10.53 025
larger, it is within an acceptable range. The extrapolation 11 278 10.49 10.85 —0.36
results also improved, but the results for the dual neutron 110 281 9.20 8.85 0.35
separation energy were still poor. Even if the number of 110 279 9.50 9.85 —0.35
parameters is close, NN-6 has better extrapolation results 110 277 10.00 1071 071
with lgwer RMSD, which may be the advantage of using 109 278 891 9.58 067
more input neurons.

However, if the inferred distance is too far from the 109 276 947 1010 063
known region, new physical effects may be generated, 109 275 9.74 10.48 ~0.74
which are hidden in the unknown region and therefore 109 274 9.99 10.20 —0.21
cannot be detected by training the NN model with the 108 275 8.92 9.45 —0.53
known data. The calculation results of o decay energy 108 273 950 9.67 ~0.17
from supgrheavy nuclei illustrate this point. In Ref. [38], 107 274 837 2.4 —0.57
the experimental values of alpha decay energy for 44 su-

. . . 107 272 8.97 9.21 —0.24
perheavy nuclei are listed. Neither these superheavy par-
ent nuclei nor their decayed daughter nuclei are among 107 271 9.23 942 ~0.19
the 2314 nuclei we used before. We present the comparis- 107 270 9.46 9.06 0.40
on of the calculated results with the experimental values 106 271 8.44 8.67 -0.23
in Table 5. As can be seen from Table 5, the calculated 106 269 3.95 8.63 0.32

results are relatively accurate when the proton number is
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less than 112, but when the proton number is greater than
or equal to 112, the results show a large deviation. The
reason may be that not enought data of superheavy nuc-
lei is included in the training, and the maximum number
of protons among the 2314 nuclei involved in the train-
ing is 110. Thus, it can be seen that the correction results
of the NN method depend on the available experimental
data. More data facilitates the training results and allows
more accurate prediction of the binding energy of nuclei
near known regions.

IV. CONCLUSIONS

In summary, we have used the NN method to im-
prove the nuclear mass prediction of the LDM. As the
number of effective neurons in the input increases, the
results become more accurate. The NN method with six
input neurons has been able to reduce the RMSD of the
LDM from 2.385 to 0.203 MeV. The six input neurons
mainly modify the nuclear binding energy between the
shells. This shows that this method is a very useful tool

for further improving the precision of quality models. In
order to verify the prediction ability of the NN method,
the double neutron separation energy measured in the re-
cent experiment was selected, and the results showed that
the results using the NN fell within the error bar of the
experiment. This suggests that if the NN method con-
tains more physical features, the prediction is better not
only in known regions, but also in unknown regions far
from the f stable line. By partitioning the nuclei into
groups, the improvement of the NN approach is more ob-
vious for nuclei in the heavy nuclear region. However,
from the results of calculating the a decay energy of su-
perheavy nuclei, this method is currently not applicable to
large-scale extrapolation.

A reliable neural network approach provides us with a
way to find the super-heavy stable island, which is the
plate we have been looking for. This work is in progress.
In addition, the NN method can also be used to improve
the properties of other nuclei, such as a decay half-life,
nuclear charge radius and so on.
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