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Abstract: The masses of pion and sigma meson modes, along with their dissociation in the quark medium, provide
detailed spectral structures of the chiral partners. Collectivity has been observed in pA and pp systems both at LHC

and RHIC. In this research, we studied the restoration of chiral symmetry by investigating the finite size effect on the

detailed structure of chiral partners in the framework of the Nambu-Jona-Lasinio model. Their diffusion and conduc-

tion have been studied using this dissociation mechanism. It is determined that the masses, widths, diffusion coeffi-

cients, and conductivities of chiral partners merge at different temperatures in the restoration phase of chiral sym-

metry. However, merging points are shifted to lower temperatures when finite size effect is introduced into the pic-

ture. The strengths of diffusions and conductions are also reduced once the finite size is introduced in the calcula-

tions.
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I. INTRODUCTION

The nuclear matter formed in heavy-ion collision ex-
periments, such as those in Relativistic Heavy Ion Col-
lider (RHIC) and Large Hadron Collider (LHC), has a fi-
nite volume and lifetime in fm and fm/c scale, respect-
ively. Initially, a hot quark-gluon plasma (QGP) is expec-
ted to be formed, which then expands, and after a particu-
lar time, the medium freezes out with a specific volume.
Experimentally, this freeze-out volume can be measured
via the Hanbury-Brown-Twiss (HBT) methodology,
whose details can be found in review articles [1,2] and
references therein. The freeze-out volume of the matter
depends on the size of the colliding nuclei, center-of-
mass energy, and collision centrality [3]. A freeze-out
volume in the range of 2000-3000 fm? is presented for a
large range of center-of-mass energies +/s in Ref. [4],
while the ultra-relativistic quantum molecular dynamics
calculations predict a volume range of 50-250 fm? [5,6].
Hence, it becomes crucial to understand the finite size ef-
fect on different phenomenological quantities within the
uncertainties in the volume of the strongly interacting
matter created at RHIC or LHC.

The effects of finite volume have been addressed in

several models such as the non-interacting bag model [7],
quark-meson (QM) model Refs. [8-14], Nambu —Jona-
Lasinio (NJL) model [15-22], Polyakov loop extended
NJL (PNJL) [23-26], Polyakov loop extended linear
sigma model (PLSM) [27], hadron resonance gas (HRG)
[28-34], and Walecka model [35,36]. All of the model
calculations invariably infer that the quark-hadron phase
diagram depends on the volume of the matter formed in
these collisions. Among the NJL and PNJL model stud-
ies [15-26] on finite size effect, only Ref. [21] has stud-
ied the effect of finite size on meson masses. However, a
detailed investigation of their dissociation probability,
along with their masses in the quark medium, would
provide a complete picture. As a first step and for the first
time, we investigate the spectral and dissipation proper-
ties of the lightest chiral partners, namely, the 7 and o
mesons.

The remainder of this article is organized as follows.
In Sec. II, we present the formalism part, which has two
subsections. In Sec. II.A, the framework of the Nambu-
Jona-Lasinio model with the finite size is introduced. In
Sec. II.B, the framework of diffusion and conductivity is
constructed for mesonic modes. After addressing the
formalism part, we explore the numerical results of
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masses, decay widths, diffusion coefficients, conductivit-
ies of the mesonic modes, and their finite size effect in
Sec. III. Finally, we summarize our investigation in Sec.
IV.

II. FORMALISM

A. NJL model framework and finite volume

We consider the framework of the Nambu-Jona-Las-
inio (NJL) model [37,38], through which we can obtain
temperature-dependent quark and meson masses from
hadronic to quark temperature domains, within which a
crossover type phase transition can be developed as pre-
dicted by lattice quantum chromodynamics (LQCD) cal-
culations.

We adopt a two-flavor model with a degenerate mass
for u and d quarks. The Lagrangian density (for any
quark flavor) can be expressed as

L =qy,id"q—myqq +Gl(Gq°* +Giys™ 9?1, (1)

where flavor summation is not explicitly shown and m,
denotes the bare quark mass. The ¢ are Pauli matrices
acting in flavor space. Owing to the dynamical breaking
of chiral symmetry in the NJL model, the chiral condens-
ate ¥ =(gg) acquires a non-zero vacuum expectation
value. The constituent mass at the zero quark chemical
potential and temperature can be obtained from the gap
equation,

M; =m,-2GX
d3P M,

=mg+ 4NfNCG (27[)3 E_p

[1-2n,1, )

where n, = 1/(e?£» + 1) represents the Fermi-Dirac (FD)

distribution of quark with energy E, = \/p®+ M2, zero

quark chemical potential, and temperature 7 = 1/8. Here,
the flavor degeneracy factor Ny =2 and color degeneracy
factor N. =3 are considered, while m, and M, are cur-
rent and constituent quark masses, respectively. The tem-
perature-independent part of the integral of Eq. (2) is ul-
traviolet divergent, while the temperature-dependent part,
which contains the Fermi-Dirac distribution function n,
is finite. We use an ultraviolet cutoff A to regularize the
divergent integral while the T-dependent integral is integ-
rated without a cutoff. By tuning different fitted paramet-
ers [39] A =651 MeV, m,; =5.5 MeV, and GA* =2.1, we
obtain feasible values for the quark condensate
(T =0) = 2(-251 MeV)? [40], pion leptonic decay con-
stant (92.3 MeV), and pion mass (m, = 139.5 MeV) in a
vacuum. The diagrammatic representation of Eq. (2) is
presented in Fig. 1. In the mean-field approximation, the

—_—— = —_— 4

Fig. 1. Diagrammatic representation of Eq. (2), which estab-
lishes the connection between dressed quark (double solid
line) with constituent mass M; and bare quark (single solid
line) with current quark mass my.

thermodynamic potential Q can be obtained as

d3p
Q:_ZN”fo(zn)3 \ P2+ M2

d*p (E-p)
—2NcNfo@(ln(l+exp(— T ))

2
+1n(1+exp(—(E;f“))))+ (M4G’") 3)

where each term bears its usual significance, which can
be found in [39,40].

Next, to study mesonic states as a quark condensate,
the conventional step is to iterate the four-point vertex as
presented in Fig. 2, which interprets that infinite series of
quark-anti-quark loops are equivalent to a meson propag-
ator [37,38,40,41]. The mesonic polarization function
I, is given as

, 44
M (w0, §) = f P TyuS(p+aymS@) (@)
L 2n)

where S(p) denotes the Hartree quark propagator. 7y,
refers to the scalar or pseudoscalar interaction vertex and
the index M denotes the scalar or pseudoscalar interac-
tion channel. The polarization function can be expressed
as [40]

"M = I - (0 - ¢ - €3 2 (@, §) 5)
where
dp 1 E,+ E,—
I :NCfo P __ tanhﬂ( b 'u)+tanh'8( r=H
T @ny E, 2 2
(6)

Fig. 2.
a quark-quark interaction into an effective n, o meson propag-
ators (double dash line).

Diagrammatic representation of the transformation of
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and the function I, (w,§) given as

dp 1
(2n)3 2E,Epp+q)

L(w,q) = —NCfo
A

X ————[n(E, —u) —n(E g —
{w+Ep_Ep+q[n( p w)—n( p+q )

+1(=Epsg =) = n(~Ep ~ )]

1 1
+ —_
[U)_Ep_Ep+q “)+Eﬂ+Ep+q]

X[WEp —p) —n(=Ep+q _/J)]}~ (7

The complex function that appears in the thermody-
namic potential can be simplified, as it can be expressed
as [40]

1-2Gy(w+ie,§) = [1-2GTy(w—i€, )] exp(=2iDy(w, ).

(®)
®,, represents the scattering phase shift associated with
the quark-antiquark scattering in the interaction channel
and it can be divided in two parts

Dy =d+dyu ©)
with
Im/. i
tang = — B ie D) (10)
Rel(w +ie€,G)
and
ImM?(w + i€,
tan¢M:_ m ((,L)+l€ 67) : , (11)
(w2—q2—612w+ReM2(w+16,67))
where
1-2GI,
M(w.d) = 12260 12
@D = o (2

where ¢, denotes the meson phase shift and ¢ repres-
ents the background phase shift. The mass of the meson is
extracted from the pole of the meson propagator in Ran-
dom Phase Approximation at zero momentum, which is
given by the following equation [38,40]

1 —-2GRellyo(ye, 0) =0, (13)

where the real part of Il -(w,0) are expressed as [38]

2

2 &’p (1-2n,) w,
Relly(w,0) = 2N.N . (14
x( ) cIVf f (271.)3 w, 0)12, _ (1)2/4 ( )
- d3 1 - 21’! 0)2 - M2
Rell,(w,0) = 2NN, p (1=2n) @)= My (15)

2} w, Wi-w?/4
The mass of the unbound resonance has been con-
sidered as the real part of Il;, at zero density. For
(w=my s <2M,), the imaginary part of the polarization
function is zero; hence, the decay channel into the
dressed gg pair is closed, and the spectral function gets a
bound state contribution expressed by a delta peak in cor-
respondence of the meson mass. For m,, >2M,, the
meson can decay into a constituent quark-antiquark pair.
Hence, it is not a stable bound state, but a resonant state.
I1;, has an imaginary part, and the meson spectral func-
tion receives a contribution from the continuum cut.
Then, the pole mass equation can be expressed in the
complex form to determine the resonant mass m;,  and its
associated decay width I';, from the relationship [40],

1. =
1-2GM, (m,w ~i>Tre, o) =0 (16)

From the imaginary part of M?, we can define the de-
cay width as,

_ ImM2(my, - — i€,0)

Cro (17)
My o
where [38]
Im/ (w,0) =6(w” - AMDOAA® + M) - w?)
NNy 4M?
X ——L 2 \[1 - —L[1 =2n(w/2)],
161 w?
(18)
Im§ (,0) =6(w? — 4M2HAA? + M?) - w?)
NNy 2 4M, 3
LW -amH1- —2
x 167 (@ 2 w?
x[1-2n(w/2)]. (19)

To implement the effect of finite system sizes, proper
boundary conditions must be chosen: periodic for bosons
and anti-periodic for fermions. In effect, this leads to a

sum of infinite extent over discretized momentum values,
n; . . .
pi=—, where R denotes the dimension of cubical

volume and n; are positive integers with i = x, y, z. Neg-
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ative values of n; are neglected, because they will provide
wave-functions identical to the positive n; solutions ex-
cept for a physically irrelevant sign change. Here, we
have done several simplifications: i) We neglect surface
and curvature effects. ii) The infinite sum is considered as
an integration over a continuous variation of momentum,
but with the lower cut-off. iii) We do not adopt any modi-
fications to the mean-field parameters due to finite size
effects. Our philosophy had been to maintain the known
physics at zero T, zero u, and infinite volume fixed.

This implies a lower momentum cut-off

T . . .
Prin ~ = A(say). The infinite sum over discrete mo-

mentum values is replaced by integration over con-
tinuum momentum variation, but with the lower mo-
mentum cut-off. Hence, by replacing the lower limit zero
by the lower cut-off A in Eq. (2), Egs. (14)—(15), and Eqgs.
(18)—~(19), we obtain modified results of constituent quark
mass M,, meson masses .., and meson dissociation
probabilities y,,, which depend on the volume of the
medium along with the temperature of the medium.

In principle, discrete momentum values should be
summed over, but for simplicity, we integrate over con-
tinuous values of momentum. This simplified picture of
the finite size effect by implementing a lower momentum
cut-off is well justified in Refs. [42,43]. It is well demon-
strated in Fig. 1 of Ref. [42].

B. Diffusion of chiral partners

It is known that = and o mesons are pseudo-scalar
and scalar modes comprising u,d quarks with the same
spin quantum no (J=0) but different parity states
n=-1,+1. Particle physicists generally follow the com-
pact notation of the spin and parity quantum number as
J”™. Hence, we can visualize that 7 and o mesons are
J*=07"" and 0*! quantum states of the same quark com-
position. They are called chiral partners. Quarks are the
fundamental building blocks of hadrons, and a non-zero
quark condensate is responsible for the mass difference
between chiral partners at 7 = 0. Therefore, by increas-
ing the temperature of nuclear or hadronic matter, a phase
transition from hadrons to quarks can occur beyond a
transition temperature, and the corresponding condensate
also melts down. Owing to this transformation from large
to nearly zero condensate and breaking to the restoration
phase of chiral symmetry, the mass difference between
chiral partners disappears. The NJL model (as well as
other effective QCD models) can optimally capture these
facts, and its mathematical framework has already been
addressed in Sec. I1.B, while its results will be discussed
in Sec. III. In this subsection, we will discuss the drag,
diffusion, and conduction of two mesonic modes via dis-
sociations into quarks and anti-quarks. The mathematical
anatomy of the dissociation process has already been ad-
dressed in Eqgs. (18)—(19) and it can be directly connec-

ted with drag and then with the diffusion and conduction
of chiral partners. Here, we will first devlop the diagram-
matic construction of conductivity and diffusion. Then, in
the end, we will observe the position of the drag coeffi-
cient in the diagrammatic expression of conductivity and
diffusion. In real-time thermal field theory, any two point
function at finite temperature can always be expressed in
a 2 x2 matrix structure because the contour in a complex
time plane offers four possible sets of two points [44,45].
For a symmetric contour (although there are many other
ways to draw it), time evolution starts from —oco to +oo
along a horizontal real-time axis, then it shifts down
along the imaginary-time axis by —ig, and then returns
from +oo to —oo; finally, it completes its remaining shift
by —ig along imaginary-time axis, such that its final des-
tination point is —i3. This time evolution along the ima-
ginary-time axis up to —iB is the basic requirement of
thermal field theory, where the time evolution operator
has to be converted into a density matrix [44,45]. In real
time formalism, we have two real-time axes from —oco to
400 and from +oo to —co. Four possible approaches are
available to choose two points on these two axes, which
can be considered as four components of a 2x2 matrix
structure. Realizing the propagator as a two-point func-
tion of field operators, if one can proceed for finding
thermal propagator in real-time formalism, then a 2x2
matrix structures with four components D'!, D2, D!,
D?? can be found. Similarly, one-loop self-energy at fi-
nite temperature forms a 2 x2 matrix structure with four
components 1!, IT'2, T1?!, 11?2,

This matrix can normally be diagonalized in terms of
a single element like retarded component Hffv(qo,q’) or the
spectral function p,,(qo,7) of that mesonic correlator.
Starting with 11 components (I1.}) of the 2x2 matrix,
anyone of these quantities can be obtained by adopting
their connecting relationship [46,47]:

p}lV(qo’ q)) ZZImH;va(qO’ q_))

=ztanh(ﬁ$)1mn;§(qo,q) . (20)

Using the Wick contraction technique, 11 compon-
ents of the current-current correlator can be derived as
[46,47]

(g0, =i | d*xe(TJ,(x)],(0)

_: 4 igx -
=i | dxe™(T¢(x)0u¢ (0)¢ (0)0,¢(0))s

. d*k
=1waﬂv(q,k)D11(k)D11(P=q+k)’ 2D

where
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-1
D'k)= ————— + 2min (k% — w?) , 22
() k(z)—wi+ie k(o k) ( )

where n; = 1/(e#“ — 1) represents Bose-Einstein (BE) dis-
tribution function of meson
and

Nyv(q’k) = —4]{#(6] - k)v . (23)

Eq. (21) can diagrammatically be associated with a
one-loop type of self-energy diagram with internal meson
lines, as illustrated in Fig. 3(A). Then, from this correlat-
or IT)}, it is possible to obtain the useful correlators - (1).
The density-density correlator is obtained as

8 (g0, =1 | d*xe'?([Jo(x), Jo(0)])p (24)

(2), while the spatial current-current correlator is defined
as

(g0, @) =i | d*xe*([Ji(x), T;(0)])s - (25)

The spatial current-current correlator can be decom-
posed into transverse and longitudinal components as

qiqj qi4j
118 (g0.9) = (q—; —&,)H’;wo@ + #le(%,tf) . (20)

where our matter of interest is on the longitudinal com-
ponent le(qo,cf), which can be extracted from both dens-
ity-density and (spatial) current-current correlators by us-
ing the relationship

5 o
q ‘q’
1% (q0,9) = q—gﬂgo(%,ff) = qq—gng(%,ff) . 27

Hence, we can define a spectral function without
Lorentz indices

/¢==)=:¢\\
PN Ao BN Q
mo
« ) z===pm=z=z=z==
A o
N ”
N o
Ssa _2?
Sagezz
(A) (B)

Fig. 3.
meson current-current correlator, whose low frequency limit is
connected with its diffusion coefficient or conductivity. (B)
Dissociation diagram of n or o meson to quark and anti-
quark.

(A) One-loop schematic representation of = or o

p = 2115(q0.9) - (28)

Using Eq. (22) in Eq. (21) and then using the other
Egs. (20), (28), we obtain the simplified structure in a
positive but low go region [46,47]

B &k (-m)N
p(q0’®_2f(2ﬂ)3 4(1)k(1)p
x [qoBing (1 =n)}(qo + wi — wp)]
&k N qopin; (1 —nd}Yy

im )
(2n)3 dwrw, v=0| (qo + Wi — wp)? +¥2
29)

We will consider the finite value of y in further calcu-
lations to obtain non-divergent values of pion () and
sigma (o) meson conductivity

Ly 0(q0,9)
=— l1m

6%47"0 q0

1 © Bk 1,k 2
==2 — (= 1 30
5 ﬁjo‘ (27r)33(wk) ({1 +ni}] (30)

represents static susceptibility and wy = (k> +m2 }'/2.
Therefore, by identifying v, as the drag coefficient of 7
and o mesons, one can calculate spatial diffusion con-
stant

D =«/xs (32)
Eq. (29) can be approximated as

c= 10230, (33)
Y

and then using the further approximated relationship
(v?/3) =T/m, based on the non-relativistic equipartition
theorem, Einstein relationship can easily be determined

1 T
W?3)= =
Y Mpey

=D. (34)

Egs. (30) to (34) basically represents general connec-
tions among the quantities - D, vy, «, ;. For 7 and o
mesonic condensates, these quantities can be denoted as
Dros Yro» Ko X5 respectively. Similar calculations of
the same quantities for heavy quark can be found in Ref.
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[48].

Here, we want to obtain drag (y.. ), diffusion (D)
coefficients, and conductivity (k.. ) for 7 and o mesons
near and beyond Mott temperature, where these mesonic
condensates can dissociate in quarks and anti-quarks in
the medium via the decay process n/oc — Q+ 0 and the
mesonic condensates will dissipate through a medium,
whose corresponding .y, Dy, and k;, we wish to es-
timate. Here, drag coefficients of x,o states are estim-
ated via the decay process of 71— Q0 and o — Q0.
Hence, we can precisely equate y,, with Eq. (17), which
estimates the decay probability of 7,0 — QQ from the
imaginary part of the mesonic self-energy. These dissoci-
ation diagrams are illustrated in Fig. 3(B). After obtain-
ing the drag coefficients vy, ., we can calculate D,, and
kro using Egs. (30), (32).

1. RESULTS AND DISCUSSION

This section will numerically explore the spectral and
dissipation properties of chiral partners n and o mesons
at finite temperature and size. Their masses will reveal
their spectral properties, while their drag, diffusion, and
conductivity will measure their dissipation properties.

The masses of the 7 and o mesons are obtained from
Egs. (13)—(15), and the decay widths can be calculated
from Eqs. (17)—(19). Fig. 4 presents the temperature de-
pendence of chiral partners, 7 and o mesons, for differ-
ent system sizes R. In real world (for T = 0), their masses
are well separated; however, they will be in degenerate
states at a high temperature. This fact of merging chiral
partners is considered as an alternative signature of chiral
symmetry restoration. This transition from chiral sym-
metry breaking to restoration is observed for both infinite
and finite system sizes; however, their merging pattern
becomes different. In the beginning, pion mass increases
and sigma meson mass decreases with T, then beyond the
transition temperature, both increase to be merged. In this

0.8 ——m—————————+———+ 71+
0.6
=
8
= 04
°
B
=
0.2
O....l....l....l....l....l.
0 0.05 0.1 0.15 0.2 0.25
T (GeV)
Fig. 4. (color online) 7 dependence of pion (black) and

sigma (red) meson masses for R = co (solid line), 4 fm (dash-
dotted line), 3 fm (dash line), and 2 fm (dotted line).

context, the reader may find an interesting trend pion
mass in Ref. [49], where it can be reduced near the trans-
ition temperature. At 7 =0, the mass of the 7 meson in-
creases as we decrease the system size, while the mass of
o meson remains unchanged. As the volume decreases,
the difference between n and o mesons also decreases,
which indicates that the chiral symmetry effect reduces
with decreasing volume. The exact mathematical analys-
is finite volume effect on Eqs. (14) and (15) might be a
challenging job; however, shrinking the thermodynamic-
al phase-space can be considered as the main source of
modifications. Results obtained from the increasing pion
mass with decreasing volume have also been observed in
other frameworks like the chiral perturbation theory [50]
and renormalization group methods in the quark-meson
model [51]. However, the pion mass generally shoots up
after the critical temperature in the infinite volume case,
but its blowing trend becomes quite suppressed in the fi-
nite volume case. As collective result of increasing the pi-
on mass and suppressing blowing trends after critical
temperature, we infer that the masses are suppressed from
R=o0 to R=4fm, whereas they are enhanced from
R=4fm to R=2fm.

Next, in Fig. 5, we have plotted 7= and o decay widths
in a Q0 channel for different system sizes. Because the o
meson mass is more significant than two times the quark
mass (my >2M,) in the entire temperature range, we will
obtain non-zero vy, in the entire 7. However, for the case
of the 7 meson mass, the kinematic threshold m, >2M, is
valid above the Mott temperature Tj;, below which the
n— Q0 decay is forbidden. For R = oo case, T = 0.201
GeV, and it shows that the solid black line, denoting 7y,
is non-zero beyond that temperature. In this study, we
have only considered the dissociation diagram of pion.
This explains why we obtain this kind of pattern.
However, one can obtain a non-zero scattering probabil-
ity of pion below the Mott temperature T, by consider-
ing other possible scattering diagrams. For example,

Y. ¢ (GeV)

0.15
T (GeV)
Fig. 5. (color online) 7 dependence of pion (black) and
sigma (red) meson decay widths through quark-anti-quark
channel for different system sizes.
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m+nm — m+n scattering is possible in higher-order dia-
grams as addressed in Ref. [52]. Accordingly, this present
study is intended to solely consider the dissociation dia-
gram and zoom in on the finite size effect of merging pat-
terns of chiral partners. A merging pattern in the decay
width of chiral partners is observed. It is expected that as
the kinematic phase-space of two decay probabilities de-
pend on their mass only, their coupling constants are not
different, and similar to the NJL model, 7 and o meson
states are basically considered as condensates of the same
quark composition, but with a different spin-parity
quantum number J* (= 0~ and 0* for n and o meson re-
spectively). When we consider the finite size effect, we
find that the y,, increases in the low 7 domain. Mott tem-
perature decreases as R decreases, which can be ob-
served from shifting the threshold pion decay width along
the T-axis.

Fig. 6(a) presents quark masses as a function of 7 and
R. It can be observed that M, decreases with decreasing
system size due to the shrinking of the phase-space integ-
ration in gap Eq. (2). Accordingly, due to the term
\JMro—4M} in Egs. (18) and (19), the y., become lar-
ger (in low T domain) as the system size decreases.
Knowing M,(T,R) and m.(T,R), the Mott temperature
Ty(R) can be determined as a function of R, where
my—2M, = 0. It is plotted in Fig. 6(b), from where we ob-
tain Ty(R), which is plotted as a solid red line with
circles in Fig. 7. From Fig. 6 it can be observed that the
Mott temperature value decreases in a lower system size.
The value of the Mott temperature for R =2 fm is quite
smaller than the higher volume systems.

Fig. 7 represents the variation of the transition tem-
perature and Mott transition temperature with R. The
transition temperature can be obtained from the maxima
of the first derivative of the chiral condensates for the dif-
ferent finite system sizes. As R increases, both the trans-

0 0.05 0.1 0.15 0.2 0.25
T (GeV)

Fig. 6. (color online) T dependence of (a) M, and (b)
my—2M, for different system sized. Straight horizontal red
lined, located at m,-2M, =0, are indicating corresponding
Mott temperature Ty, for different values of R.

ition and Mott transition temperatures increase, and after
R =4 fm, they both attain saturation. The value of the
Mott transition temperature is lower than that of the trans-
ition temperature below R = 3 fm. As we increase the sys-
tem's size, the Mott temperature value starts increasing
more than the transition temperature and saturates at a
higher value than the transition temperature.

Using the m,,(T,R) and y,,(T,R) in Eq. (30), we
have obtained the conductivity of the pion and sigma
kro(T,R), which is plotted in Fig. 8. Below the Mott tem-
perature, a divergence trend and sharp divergence of
k-(T,R) are observed for infinite and finite system size
cases. The source of divergence is the relationship
kg 1/v.. The pion and sigma meson's conductivity
changes significantly with the variation of the system size
and decreases with the decreasing volume. The conduct-
ivity of the pion and sigma meson merges after the trans-
ition temperature, which is again decreased as the system
size decreases.

Fig. 9(a) shows the diffusion coefficients of 7 and o
mesons by using Eq. (32), while Fig. 9(b) shows corres-

250 P
o—oT,
—aT,
200 e
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i)
)
=
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150 e
e b o o b o b b b b 1y
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R (fm)
Fig. 7. (color online) Modification of transition temperature

T. and Mott temperature T, for changing the system size R,
where R = 10 is approximately considered as infinite volume.

Z
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zlﬁ
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Fig. 8. (color online) Conductivity of = (black) and o (red)

mesons or light flavor condensates with quantum numbers
J*=0" and 0% for R = o (solid line) and 2 fm (dotted line).
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0.05 0.1 0.15 0.2 0.25

T (GeV)
Fig. 9. (color online) Diffusion coefficients D of = (black)

and o (red) mesons or light flavor condensates with quantum
number J* =0~ and 0* for R = oo (solid line), 3 fm (dash line),
and 2 fm (dotted line).

Table 1.
temperatures, where masses (4" column), drag coefficients

Transition (2™ column) and Mott (3™ column)

(2" column), diffusion coefficients (3" column), and con-
ductivity (4" column) of chiral partners are merged for R =
(2™ and 5™ rows) and R=2 fm (3" and 6" rows), temperat-
ures are in MeV.

) Transition Mott Mass
Size Temperature Temperature Doublet
R=oc 184 200 245
R=21fm 166 153 223
Size Drag Diffusion Conductivity
Doublet Doublet Doublet
R=c0 234 245 236
R=2fm 188 195 212

ponding results by using the Einstein relationship given
in Eq. (34). Furthermore, one can notice the divergence
nature of D,(T,R) below the Mott temperature and real-
ize the feasible relationship D, o« 1/y;.

At the end, if we briefly take a look at all the quantit-
ies of chiral partners for infinite (R = o) and finite (R =2
fm) sizes of the medium, we can obtain a table, as presen-
ted in Table 1. The transition and Mott temperatures for
R =00 and R =2 fm are presented in Table 1, which also
includes the temperatures, where the masses (4"
column), drag coefficients (2" column), diffusion coeffi-
cients (3" column), and conductivity (4" column) of «
and o mesons tend to merge. Along with the well-known
conventional concepts of transition and Mott temperat-
ures, we have defined the temperatures, beyond which the
system forms the doublet of masses, drag coefficients,
diffusion coefficients, conductivity. All these temperat-
ures reveal a common fact that their positions shift to-
wards lower values during the transition from infinite to
finite system sizes. Similar to chiral condensate melting,
forming mass doublets beyond the transition temperature

is another demonstration of chiral symmetry restoration.
Accordingly, merging other quantities such as drag, diffu-
sion coefficients, and conductivity might also be con-
sidered alternative realization chiral symmetry restora-
tion. In fact, collecting all quantities provides a deep un-
derstanding of the different thermodynamical properties
of chiral partners and transition details from breaking to
restore the phase of chiral symmetry. The transition point
with respect to the drag, diffusion coefficients, and con-
ductivity will also shifts in a lower temperature when one
goes from infinite to finite size matter.

At the end, the reader should accept the quantitative
limitations of the present simplified approach, where in-
tegration with lower momentum cut-off 2 is considered
in place of a quantized momentum sum. For a small sys-
tem with R=2 fm, the phase space becomes signific-
antly smaller due to larger values of lower momentum
cut-off 4. We observed significant changes in different
quantities due to this phase-space shrinking at R =2 fm.
For this significantly smaller-size case, in principle, we
should use quantized momentum sum instead of integra-
tion because of larger energy level steps. Again, in place
of cubical size, considering the exact cylindrical size of
RHIC or LHC matter might be a more realistic problem
for phenomenological purposes. All these realistic com-
plicated pictures are not covered in this present study, but
will certainly be interesting future research problems.

IV. SUMMARY

We studied the finite volume effect on the spectral
functions of strongly interacting matter at zero chemical
potential. We presented the pion and sigma meson masses
and decay widths at different finite system sizes. In addi-
tion, we calculated the conductivity and diffusion coeffi-
cients of pion and sigma mesons. All these quantities ex-
hibit significant variations with the finite system size.

At low temperatures, the chiral symmetry is broken,
and after the transition temperature, the chiral symmetry
is restored. The transition from the chiral symmetry
broken phase to the chiral symmetry restored phase can
be visualized in both the infinite and finite volume sys-
tems. Based on the quark condensate or quark mass melt-
ing, we can define a chiral transition temperature, which
shifts to lower values when we go from infinite to finite
size matter. An alternative chiral symmetry restoration
can be realized from the merging of 7 and o~ masses near
and after the transition temperature. This merging point
also shifts towards lower temperature due to finite size
consideration.

We have shown the decay widths of the pion and
sigma meson masses with different system sizes. Decay
widths are estimated from the imaginary part of self-en-
ergy for pion and sigma meson, which interpret the ther-
modynamical probabilities of their dissociation to quark
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and anti-quark channels. For the sigma meson, the decay
width is observed for the entire temperature range.
However, for the pion, the decay width begins after the
Mott transition temperature, which also decreases with
decreasing system size. Similar to masses of the chiral
partners, their decay widths also merge in the temperat-
ure domain of the restored phase. Again, the finite size
consideration makes their merging points shift towards
lower temperature values. For the finite size effect, we
find that the decay width of the o~ meson is enhanced in
the low T domain, which is a quite interesting and new
outcome.

Considering the dissociation process as the dragging
mechanism of 7 and o modes with a medium, we estim-
ated their diffusion coefficients and conductivities. Low
temperature 7 mode diffusion or conduction diverges be-
cause of the vanishing drag process below the Mott tem-
perature; however, its non-divergent values beyond Mott
temperature are merged later with corresponding quantit-
ies of ¢. Similar to merging the masses and decay widths
of chiral partners, their merging of diffusion and conduc-

tion values can be considered as an alternative realization
of the restored phase, and again, their merging points
shift towards the low-temperature direction when the size
of the matter is reduced.

The finite size effect of quark and hadronic matter,
explored in this study, can be connected with RHIC or
LHC phenomenology. Here, we have found mass reduc-
tions of a constituent quark and pion; however, the mass
of the sigma meson remains approximately the same in
the low-temperature zone. These changes modify the kin-
ematic phase-space part of meson to quark-antiquark dis-
sociation, as well as the diffusion probabilities of mesons.
This finite size effect of the NJL model's phase-space
structure can be implemented in other quantities connec-
ted with RHIC or LHC phenomenology. For example, in
the exploration of the finite size effect on dilepton pro-
duction, heavy mesons suppression, for which a systemat-
ic detail evolution picture has to be adopted. In a finite
size system, there is the possibility of a coordinate-de-
pendent condensate, which would be the research topic of
a future study.
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