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Abstract: In this study, we obtain wormhole solutions in the recently proposed extension of symmetric teleparallel
gravity, known as f(Q,T) gravity. Here, the gravitational Lagrangian L is defined by an arbitrary function f of O and
T, where Q is a non-metricity scalar, and 7 is the trace of the energy-momentum tensor. In this study, we obtain field
equations for a static spherically symmetric wormhole metric in the context of general f(Q,T) gravity. We study the

wormbhole solutions using (i) a linear equation of state and (ii) an anisotropy relation. We adopt two different forms
of f(Q,T), (a) linear f(Q,T)=aQ+BT and (b) non-linear f(Q,T) = Q+ Q% +nT, to investigate these solutions.
We investigate various energy conditions to search for preservation and violation among the obtained solutions and

find that the null energy condition is violated in both cases of our assumed forms of f(Q,T). Finally, we perform a

stability analysis using the Tolman-Oppenheimer-Volkov equation.
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I. INTRODUCTION

Black holes (BHs) and wormholes (WHs) are two fas-
cinating solutions of general relativity (GR). Evidence of
BHs has already been shown in literature [1-3] and is es-
tablished beyond doubt. The discovery of gravity waves
and the signatures they carry may soon bring BHs and
their study into the domain of observational astrophysics.
The presence of WHs has not yet been established, and
even their existence is highly debatable. A detailed study
has been performed on their existence in [4]. There is a
fundamental difference between these entities. BH forma-
tion is generic and omnipresent in nature, caused by the
gravitational collapse of stars. There is no special require-
ment regarding the matter content that facilitates the
formation of BHs, and the energy conditions are very
much preserved in their formation. In contrast, WHs are
not sufficiently generic and require a special ecosystem in
terms of energy conditions for their formation. WHs re-
quire non trivial matter (exotic matter that violates the
null energy condition (NEC)) content for their mainten-
ance and formation [5].

After the discovery of BHs and the possibility of
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probing the interior of BHs via gravity waves, research
on WHs increased [6]. WHs and their conception stem
from the "Einstein-Rosen bridge" [7], which was initially
thought of only as a formal mathematical result. In [8],
Wheeler highlighted the theoretical possibility of using a
WH to form a bridge between two vastly separated re-
gions. In 1988, Morris and Thorne [9] discovered anoth-
er class of WH solutions that maintains the WH throat
and hence may be traversable. The throat of these WHs is
kept open due to a specific type of matter that violates
various energy conditions, especially the NEC.

This type of matter is known as exotic matter, which
is not part of the standard model of particle physics, and
is studied in standard model extensions. It is required in
both dynamic [10—13] and static [14—16] WH scenarios.
In general, classical matter content satisfies all energy
conditions; however, if the effects of quantum theory are
included in, for example, the Casimir effect, there are
situations in which the energy conditions are violated.
Similarly, for quantum gravity, one can encounter scen-
arios in which classical energy conditions break down,
leading to a 'repulsive' big bounce. To quantify the extent
of energy violation, Visser et al., in [17], designed the
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volume integral quantifier (VIQ) to quantify the total av-
eraged null energy condition (ANEC). Moreover, Visser
[18, 19] proposed a copy-paste technique to minimize the
usage of exotic matter, though this technique is applic-
able to exotic fluid at the throat of a WH. Kuhfittig gave
another solution in [20, 21], where by imposing the con-
dition b'(r) <1 (where b(r) is the shape function) at the
WH throat, the region demanding exotic matter can be
made arbitrarily small.

In recent years, modified theories of gravity have at-
tracted the interest of researchers. These theories are geo-
metrical extensions of Einstein's GR and are used to de-
scribe early and late time acceleration of the universe.
Significant work has already been conducted on astro-
physical objects such as WHs in modified theories, and
research is ongoing. Born-Infield theory [22—24], Rastall
theory [25], quadratic gravity [26], curvature matter
coupling [27-29], Einstein-Cartan gravity [30—32], and
braneworld [33-37] are a few examples.

Lobo and Oliveira [38] investigated WH geometries
in the context of f(R) gravity (where R is the Ricci scal-
ar). They used specific shape functions and various equa-
tions of state (EoSs) to find exact WH solutions and stud-
ied their behavior with energy condition. In [39], Azizi
studied WH geometries in f(R,T) gravity and revealed
the effective stress-energy responsible for the violation of
the NEC. Moreover, an interesting study on teleparallel
gravity was conducted by Bahamonde et al. in Ref. [40].
Additional articles on WH geometries in different modi-
fied theories of gravity, such as in f(R,T) gravity
[41-44], f(T) gravity [45—-47], and f(T,T¢) gravity [48,
49], are available. A good model outlining the solutions
of humanly traversable WHs when generalizing physics
beyond the standard model of particle physics using the
Randall Sundram model was given by Maldacena [50].

Note that the role of the EoS in cosmology is signific-
ant because it portrays a physical fluid, which is vital to
sustaining geometry. Fluid with a linear EoS and positive
energy density is an excellent candidate for describing the
expansion of the universe. Furthermore, phantom energy
is considered a possible choice to describe the acceler-
ated expansion of the universe and is referred to as
w=p/p<-1. Caldwell first presented this concept in
[51]. Because phantom energy violates the NEC, which is
necessary for a traversable WH, this energy may play a
vital role in forming WHs like spacetime. In [52-55], the
authors investigated the physical properties of WHs by
considering phantom energy in the context of GR.

Recently, Jimenez et al. [56] introduced a new class
of modified gravity, known as symmetric teleparallel
gravity or f(Q) gravity, where Q is a non-metricity scal-
ar. In this theory, both torsion and curvature disappear,
and hence gravity only depends on non-metricity. The af-
fine connection plays a significant role in symmetric tele-
parallel gravity, rather than physical manifold [56]. It is

also noted that f(Q) gravity is attributed to second-order
field equations, whereas f(R) gravity has fourth-order
field equations [57]. Hence, f(Q) gravity offers an altern-
ate geometric portrayal of gravity, which is regardless
equivalent to GR. Articles on cosmological [58—60] and
astrophysical [61—65] objects are available, in which the
authors extensively investigate this symmetric teleparal-
lel gravity.

Yixin et al. [66] presented an extension of f(Q) grav-
ity, known as f(Q,T) gravity, which is based on the
coupling of non-metricity Q and the trace of the energy-
momentum tensor 7. In this theory, the gravitational ef-
fect is connected through the non-metricity function Q
and manifestations from the quantum field owing to the
trace of the energy-momentum tensor 7. Because it was
only recently proposed, significant work has already been
done on this gravity based on theoretical [67, 68] and ob-
servational [69] aspects. Harko et al. studied novel coup-
lings between non-metricity and matter in [70] and dis-
cussed coupling matter in modified Q gravity in [71].
Delhom [72] investigated minimal coupling in the pres-
ence of torsion and non-metricity. Moreover, f(R) grav-
ity, torsion, and non-metricity were studied by Sotiriou in
[73].

Motivated by the above studies, we intend to study
WH solutions in f(Q,T) gravity for the spherically sym-
metric and static configuration. We further extend our
analysis by considering (i) a linear EoS relation and (ii) a
relation between radial and tangential pressures under the
anisotropy case and attempt to find exact WH solutions
for both cases using linear and non-linear models.

The article is organized as follows. In Sec. II, we
show the basic formalism of f(Q,T) gravity, and the cor-
responding field equations for a WH in f(Q,T) are given
in Sec. III. By considering different forms of f(Q,T)
models, we study WH solutions in Sec. IV. A stability
analysis of the obtained WH solutions using the Tolman-
Oppenheimer-Volkov (TOV) equation is discussed in
Sec. V, followed by final remarks in Sec. VI.

II. BASIC FIELD EQUATIONS IN f(Q,T)
GRAVITY

We consider the action for symmetric teleparallel
gravity proposed in [66],

1
S=fﬁf<Q,T>v—_gd“x+f£m Vogd, (1)

where f(Q,T) is a function of non-metricity Q and the
trace of the energy momentum tensor 7, g is the determ-
inant of the metric g,,, and £, is the matter Lagrangian
density.

The non-metricity tensor is given by [56]
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Q/lﬂv = Va8uvs (2)

and we can define the non-metricity conjugate or su-
perpotential as

1 ~
P” uv = Z [_Qa wv T 2Q(p “ »t Qaguv - Qaguv _6((7:,Qv)] s
3)
where

0o =0, K s Qa = Qﬂ aps (4)

are two traces of the non-metricity tensor.

The non-metricity scalar is represented as [56]

0= _Qozuv P Q)
=—g" (L Lo - 155 15,), (6)

where the disformation Lﬁﬂv is defined by

=Ly h 7

#V_E ,uv_Q(ﬂ v* ()

Now, by varying the action with respect to the metric
tensor g,,, we can arrive at the gravitational equations of
motion, which can be expressed as

\;__z—g Vo (V=8 S0P )~ %gwf + fr (T + O )

~ fo(Puap Ov P =20 , Papy) = 8T, (8)
_ delf _ delf
where fp = 30’ and fr = Il

By definition, the energy-momentum tensor for a flu-
id depiction of spacetime can be composed of

T o—_ 2 6(\/_g~£m) (9)
PN g
and
oT,
_ af af
O, =g _6gﬂv . (10)

III. WORMHOLE IN f(Q,T) GRAVITY

Consider a spherically symmetric and static WH met-
ric in Schwarzschild coordinates (z, r, 6, @), given by [5,
9]

b -1
ds2=ez¢<’>dt2‘(1—ﬁ) dr? =2 de? -1 sin? 042, (11)
r

where ¢(r) and b(r) denote the redshift and shape func-
tions, respectively. They both obey the following condi-
tions [5, 9]:
. b(r)
(1) For r>ry, i.e., out of the throat, 1 — — > 0. At

,
the WH throat, i.e., r = ry, b(r) must satisfy the condition
b(ro) =rp.

(2) The shape function b(r) must fulfill the flaring-out
requirement at the throat, i.e., b’'(rp) < 1.

(3) For the asymptotic flatness condition, the limit

b ) )
ﬂ — 0 as r — oo is required.

(4) The redshift function ¢(r) should be finite every-
where.

In this coordinate system, the nonvanishing compon-
ents of Oy, and L%, are

Qrtt = 2€2¢¢,7 err == ((’;‘b,__b)bz) s
Qoro = Qoor = —%, Qore = Qoor = = rbrsinlje’ (12)
and
L, =L,=-¢, Lyy=-b, L, = —@e%’,
T = —%, L'yq = —bsin’6, (13)

’

respectively, where ’ represents the derivative with re-
spect to the radial coordinate 7.

In this study, we assume the matter content described
by an anisotropic energy-momentum tensor to analyze the
WH solutions, which is given by [5, 9]

T =(p+p)ugu’ —p:d,+(pr—pvuv’, (14)

where p denotes the energy density, and u, and v, are the
four velocity vector and unitary space-like vectors, re-
spectively. Both satisfy the conditions u,u” =-v,»" =1.
pr and p, denote the radial and tangential pressures, re-
spectively, and are both functions of the radial coordin-
ate r. The trace of the energy-momentum tensor turns out
tobe T =p—-p,—2p;.

In this article, we consider the matter Lagrangian
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L, =—P [74], and hence Eq. (10) can be read as en by

Ouy =g P—2T,, (15) Qz_%LZ:;+wl (16)

where P is the total pressure and can be expressed as ) ) )

Pr+2p, Now, inserting Eqgs. (11), (14), and (16) into the mo-
P= 3 tion equation (Eq. (8)), we obtain the non-zero compon-
The non-metricity scalar Q for the metric (11) is giv- ents of the field equations for f(Q,T) gravity.

b/

2(r—b) (r—=>b)(brfooQ’ r¢’ +1 2r—>b fr fr(P+p)|
(2r—b)fQ[p_ 87rr3( r—b +be( r—b _Z(r—b)2)+2(r—b))+ st | 8ar’ {1n
g[f (r— (fQ[b(’f';”+2r¢’+2)_4r¢,)+2berQQ'] frie=be  fr(P-p,) L[z(l_g)g’_g],
fr 16713 r—b r—b 8nbr? 8r 8 rlr
(18)
1 (r- 42b-n¢’ TN i
fQ(,Trb+r¢')[pt 302 (fQ( ) —4r(¢') —4r¢ )"‘E—‘VfQQQ(b)
(r b) 77 2 (l"b’ b)¢ ¢ / fT(P_pt)
87 (¢ Ty T )fQ( +ro')- 87r_]
_L _é 77 /2_(rb’_b)¢/_ rb’—b ¢_/
_871(1 r)[¢ TS 22G-b) r}' (19)
It is known that the Morris-Throne traversable WH field equations for GR can be written as
b
32 =P (20)
1 b\¢" b|
g[2(1—;)7—r—3]—pr, (21)
1 b 17 ’2 (Vb/—b)(b/ rb’ —b ¢/ o~
87r(1_7)[¢ T b _2r2(r—b)+7]_p" @2)

where g, p,, and p, are the corresponding energy density, radial pressure, and tangential pressure, respectively. Compar-
ing Egs. (17)—(19) with Egs. (20)—(22), we get

__ 2r=b) | 1 ([ b\(brfoeQ rg’ +1  2r=b fr fr(P+p) (23)
p_(2r—b)fQ[p 87rr2(1 ?)( r—b +be( y 2(r—b)2)+2(r—b))+ st |

2 U0\, (P2 s2) N i@ gre-bi fre-po |
Pr="m3|P W( ")(fg[ r—b T T T s 8 @)
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_ 1 1 b 42b-r)¢’ , D\ 2fr? L
= [ 5 (12 (0PI —ar @ - | 2 a0

r

ol +r¢)

8r 2r(r—>b) r

1 b 7 72 (rb,_b)¢/ ¢, r / fT(P_pt)
+—(1—;)(¢ +¢ ——+—)fg(m+r¢)——}.

-b

- (25)

From the above equations, we find extra terms beyond GR equations. Moreover, considering Egs. (17)—(19), we find

that the corresponding field equations for f(Q,T) gravity are

_=b)[, (@r=b)t =b) bQ2r¢’ +2)\ 2brfeeQ’  fr 2°fr(P+p)

80 = [f( b2 | r-b )+ r—b ' r=b (-b | (26)
=D b (rb'—b , N\ 2brfeQ  frP 2P fr(P-p))

8np, = — ¥ fQ(r_b( — +2r¢ +2)—4r¢)+ — S } 27)
_ (r=b) (rb’—b)(,z_—*,,+2r¢’) 402b - r)¢’ ") ., L, 2fr? AP fr(P-py)

8np; =~ s _fQ[ rr—b) M—— —4r(¢’)" —4r¢ —4rfoQd' ¢+ - —b) (28)

With these field equations, we can study WH solu-
tions by considering different models in f(Q,T) gravity.

Let us dedicate a few lines to classical energy condi-
tions developed from the Raychaudhuri equations. These
conditions are used to discuss the physically realistic mat-
ter configuration and are known as the NEC, weak en-
ergy condition (WEC), dominant energy condition
(DEC), and strong energy condition (SEC). They are ex-
pressed as follows:

e WECifp>0,p+p;>0,Vj.

e NECifp+p;>0,V,.

e DECifp>0,p+p; >0, Vj.
e SECifp+p;20,p+3,;p;20,V/,

where j=r,1.

Itis known that, in GR, the NEC is important be-
cause its violation may confirm that exotic matter is
present in the WH throat. Hence, the NEC is usually stud-
ied for WH solutions in GR. Moreover, energy density
must be positive for a realistic matter source that main-
tains the WH solutions.

Solving Egs. (26) to (28), we can obtain

fofr (—rb’ Qr(r—=b)¢' +b+2r)+3b> +4r(b—r)(¢' (r(b—r)¢’ +3b—2r) +r(b— r)¢”))

p:

247 fo (r(b— 2P +b2r(b— )¢’ +b))
- 48713 (r — b) (fr + 87)

b= (fr(2£f0QQ @r(b - ¢’ +b)+3fr2)+ 24 (2bfoqQ’ + f12))

4873 (r — b) (fr + 8m)

487r3(r—b) (fr + 8m)

, 29

fofr(rb/ @r(r=b)g’ +b+2r)=3b* = 4r(b=r) (¢’ (rb—=r)¢' +3b—2r) +r(b—-r)¢"))

Pr 4873 (b— 1) (fr + 87)

24n fo (brb" —(3b—2r) 2r(b—r)¢’ + b))
- 487r3(b—r) (fr +8m)

b= (fr (2faQQ @r(b =g’ +b)+3fr2)+ 247 (2 fo Q' + 1))

4873 (b—r) (fr + 8m)

; (30)
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fofr(=rb' @r(r=b)¢' +b+2r)+ 30> +4r(b—r)(¢/ (r(b—r)¢' +3b=2r) +r(b—r)¢"))
4873 (b —r) (fr + 8m)
2anrfo(r(b' (b=r)¢’ = 1)+2(b =1 ((@) +¢") +(2r=5b)¢' )+ b(3bg’ +1))
487r3(b—r) (fr + 8m)
r(b=r)(fr(2bfooQ +3f12) +4r(b—r)foq (fr +12m) Q'¢’ +24nfr?)

Pt =

4873 (b — r) (fr + 87) ' GD
These equations, therefore, establish the following constraints on the energy conditions:
e WEC:
fofr (=rb’ Qr(r=b)¢’ +b+2r)+3b> +4r(b—r) (¢’ (r(b— )¢’ +3b=2r) +r(b=1)¢"))
T 48713 (r — b) (fr + 87)
24nfo (r(b=2r)b" +b(2r(b—r)¢’ +b))
B 48773 (r — b) (fr + 87)
r(b=7r)(fr(2faQQ’ @r(b—r¢ +b)+3£1?)+24n(2bfooQ’ + £1°)) N
- 48773 (r— b) (fr + 87) -
_Jorb' +2r(r—b)¢’ —b)
p+pr= 7 (fr +87) 20,
e fo(r(b/ (1=r¢")+2r(r—b)((¢)* + ¢”3) —((b=2r)¢")) +b)+2rfoQQ’ (r(r—b)¢/ +b) -0 5
2r3 (fr +8m)
e NEC:
_Jo (b +2r(r—b)¢’ —b)
pEpr= 7 (fr +87) =0,
B (1—rd)+2r(r—=b)((¢')? +¢") = (b—2r)¢")) +b) +2 "(r(r—b)¢’ +b
e _So(r(t (1=r¢)+ 20— h) (@) +9 3) ((b=2r)¢")) +b) +2rfqQQ’ (r(r=b)¢’ +b) o o)
2r3 (fr +8m)
e DEC :
fofr (—rb’ Qr(r—b)¢’ +b+2r)+3b> +4r(b—r)(¢' (r(b—r)¢’ +3b—2r)+r(b— r)¢"))
p=-

48773 (r — b) (fr + 8n)
24nfo (r(b—2r)b’ +b2r(b—r)¢’ +b))
48713 (r — b) (fr + 8m)
r(b=7)(fr(2faQQ’ r(b—r)¢ +b)+3£r?)+24n(2bfoqQ' + 7)) N
4873 (r — b) (fr + 87) =
fofr (b @r(r=b)¢’ +b+2r) =36 = 4r(b=r) (@ (r(b— )¢’ +3b—2r) +r(b—1r)¢"))
24xr3(r—b) (fr +8n)
24 fo (rPb = (2b—r)Q2r(b - ¢’ +b))
24rr3(r—b) (fr +8n)
r(b—=1)(fr(2faQQ’ r(b—r)¢ +b)+3£1?)+24n(2bfoo Q' + 7)) .
247nr3(r — b) (fr + 8m) -

P—Pr

115101-6



Static spherically symmetric wormholes in {Q,T) gravity

Chin. Phys. C 46, 115101 (2022)

fofr(=rb' @r(r=b)¢' +b+2r)+ 36 +4r(b—r)(¢' (r(b—r)¢' +3b=2r) +r(b—-r)¢"))

> 0. (34)

prp= 2477 (r—b) (fr +87)
Rrfo b’ (r(b—r)¢' +b=3r)+r(b—r)(¢' Qr(b—r)¢’ +5b—2r)+2r(b—1)¢"") + b(b+1))
B 24713 (r — b) (fr + 87)
r(b=r)(fr(2faQQ’ @r(b—r)¢’ +b)+3£1?)+ 247 (foqQ (r(b— ¢’ +b) + f1?))
- 2473 (r = b) (fr + 87)
e SEC:
fofr(=rb' @r(r=b)¢' +b+2r)+ 36> +4r(b—r)(¢' (r(b—r)¢' +3b=2r) + r(b—r)¢"))
p+pr+2p =

247r3(r — b) (fr +8m)

2nfo(=rb’ (r(r=b)¢’ +b)+b> +r(b=r) (@ Q2r(b—r¢’ +5b—4r)+2r(b—r)¢"))
+

24xr3(r—b) (fr + 8n)

. r(b=7r)(fr(2bfoqQ +3f12) +4r(b—r)foq (fr +12m) Q'¢’ +24nf1?) -

24713 (r —b) (fr + 8m)

IV. WH SOLUTIONS WITH DIFFERENT f(Q,T)
MODELS

In this section, we study WH solutions with different
functional forms of f(Q,T) gravity. We analyze the beha-
viors of the solutions with energy condition. Moreover, to
achieve de Sitter and anti-de Sitter asymptotic behaviors,
we consider the redshift function ¢(r) = constant, which is
applied throughout this study.

A. WH solutions with a linear EoS

In this subsection, we consider an EoS (which repres-
ents a link between the components of the energy-mo-
mentum tensor) to solve field equations and construct
WH solutions. Typically, this concept is used in GR to
find exact WH solutions. Owing to the complexity of
field equations in modified gravity, researchers some-
times fail to obtain exact analytical solutions; hence, they
use numerical methods or do not consider an EoS. In lit-
erature, the linear EoS p, = wp is the most common for
examining WH solutions. In this study, we investigate
WH solutions with the following form of EoS [52, 75]:

pr = wp, (36)

where @ is the EoS parameter. In Ref. [76], the authors
dubbed asymptotically flat WH solutions with w < -1 as
a phantom region EoS. It is mentioned in [63] that obtain-
ing WH solutions with a linear EoS is difficult in sym-
metric teleparallel gravity. However, in this study, we

(33)

atempt to obtain exact WH solutions in f(Q,T) gravity.
Inserting Eqgs. (29) and (30) into Eq. (36), we get

folfr (ro+200" —36%) + 247 (brb’ —b(3b—27)|
—r(b= )| fr (2bfoo Q' +3f7) + 247 (2bfoo ' + /7))

=w[ fo ( fr (3172 —rb+ 2r)b’) + 247r(r(b —2P)b + bz))

+r(b-r) (fT <2beQQ’ + 3fr2) + 24”<2beQQ’ " frz)) ]
(37

Solving the above equation for the general form of
f(Q,T) is not easy; hence, we consider several specific
functional forms of f(Q,T) to find the shape function
b(r). In this study, we consider two specific forms of
f(Q,T), linear (f(Q,T)=aQ+BT [66]) and non-linear
(f(Q.T)=Q+AQ*+nT [77]), and attempt to find exact
WH solutions. After calculations, we find that it is not
possible to find exact WH solutions analytically in the
non-linear case. However, in the linear case, it is possible.
Hence, we consider

fQ.T)=aQ+pT. (38)

to study WH solutions with a linear EoS, where o and
are free parameters.

Using the above linear functional form of f(Q,T) in
the field equations (26)—(28), we obtain
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_a(12r-B)b’
P=3ar-pp+smr %)
P ;2Brb’ ~3Bb+ 12;;;;) 40)
(4 —B)(B+ 8m)r
pt:_a((ﬁ+127r)rb’+3b(ﬂ—47r)) @)

6(4m — B)(B + 8m)r3

From Egs. (39) and (40) and using the EoS given in Eq.
(36), we obtain the shape function as

b(r)=cr", (42)
where
_ 3(8-4m
= Bw-2)~ 1270 43)

_ a(12mr-B)(w + )3

and c is the integrating constant. Without loss of general-
ity, one can consider ¢ = 1.

To satisfy the asymptotic flatness conditions, 7 should
be less than 1, i.e., n < 1, and hence the possible ranges of
o and p are listed below.

From the above table, w < -1 is found under the
phantom region, and —1 < w < 0 is found under the quint-
essence region. Because the universe is accelerating, we
neglect the region w > 0. By considering the ranges of
and g from the table, we fix several values and show the
behavior of the shape functions, as shown in Fig. 1. The
shape functions exhibit a positively increasing behavior
under asymptotic background. The flaring out condition
is also satisfied at the throat of the WH. In this case, the
throat radius ro = 1. Thus, we can conclude that the shape
function satisfies all the necessary conditions for its tra-
versability. Now, by taking Eqs. (38) and (42) into ac-
count, we are able to express the energy conditions as

_a(2n(w- 1)—,3((«)—5))r’7’3

2A ’

@ (B(1—w)+ 12m(w+3) 13

e NEC:p+p, = A and p+p, =
127 — —1)r3
.DEC:p—p,:a( dl ,B)iw g and p—p; = —
4cx,8r’7_3
oSEC:p+p,+2p,=T,

where A = (8+ 87) (127w — B(w — 2)).
Again, for this linear EoS case, the energy density can
be found from the field equation (29),

_alp- 127)r1=3

R (44)

Considering particular values of @ and f based on the
obtained ranges, a graph of energy density is plotted in

— bl
— b[r]-r
— b[r]/r
b'lr]

(a)
Fig. 1.

2A ’

Fig. 2. Figure 2 shows a graph of the energy density p for
w < —1, which indicates that the energy density exhibits a
positively decreasing behavior across the entire space-
time. However, for —1 < w <0, it is violating. Therefore,
we consider a particular value of w € (—o0,—1) and plot
graphs for the NEC, DEC, and SEC in Fig. 3. It can be
observed from Fig. 3 that the NEC is violated for radial
pressure and satisfied for tangential pressure across the
entire spacetime. Moreover, the DEC is satisfied for both

(b)

(color online) Behavior of the shape function b(r), flaring out condition &'(r) < 1, throat condition b(r)—r < 0, and asymptotic

flatness condition @ — 0 as r— oo for (a) w=-1.5 with =1 and (b) w=-0.5 with 8= 14. We consider « = 1 and set the unit of radi-

us as kilometers (km).
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Energy density

0.04 -

o 0.00
-0.02
-0.04 -
-0.06 L . . . .
0 1 2 3 4
r
Fig. 2. (color online) Behavior of the energy density p with

respect to 7 for particular values of w =-1.5,-0.5, correspond-
ing to B =1,14, respectively. Here, we consider e =1 and set
the unit of radius as kilometers (km).

pressures, whereas the SEC is violated. Violation of the
NEC may confirm the presence of exotic matter at the
throat of the WH.

B. Anisotropic WH solutions

In this section, we consider the anisotropic energy
momentum tensor fluid relation p, # p, of the asymptot-
ically flat WH solutions. For this case, we consider the

NEC for radial pressure

0.00
—0.02 A
s
<,
+ —0.04 1
Q
—0.06
1 2 3 4
r
DEC for radial pressure
0.3 1
=
T 0.2
Q
0.1 A
0.0 i i ! !
1 2 3 4
r
SEC
0.000
Q' —0.005 A
+
A
S0 0.010 A
+
Q
—0.015
1 2 3 4

Fig. 3.
as kilometers (km).

relation between p, and p, as follows [78, 41]:

pi=npr, (45)
where 7 is any parameter. Because we are studying aniso-
tropic fluid, n cannot be equal to one, i.e., n# 1, other-
wise it will reduce to a perfect fluid.

Inserting Egs. (30) and (31) into Eq. (45), we get

fo|(n=1fr (367 = rb+2r)0)
+ 247 (b’ (r = bn) + b(3bn — 2nr = 1)) |+

r(b— r)[beQQ O’ (n—1)fr +24nn)

+3f(n= D) (fr +8m)| = 0. (46)

For this case, we use the previous functional forms of
f(Q,T) and attempt to find the shape function b(r). We
find that for non-linear f(Q,T)=Q+1Q>+nT, the exact
WH solutions are formidable owing to the complexity of

the field equations. However, for linear f(Q,T) = a Q+8T,
we are able to obtain exact solutions.

NEC for tangential pressure

0.15 4

Y 4
+ 0.10
QU
0.05 4
0.00 4 I f T ;
1 2 3 4
r
DEC for tangential pressure
0.10 4
=
| 0.05 4
Q
0.00 -

(color online) Behavior of the NEC, DEC, and SEC for w=-1.5 and g = 1. Here, we consider a = 1 and set the unit of radius
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For the linear case, considering Egs. (40) and (41) in ality, one can consider ¢; = 1.

Eq. (45), we get the shape function b(r) as follows: To satisfy the asymptotic flatness conditions, y should
be less than 1, i.e., ¥ < 1, and hence the possible ranges

b(r)=c1r, 47) of n and S are listed below. From the above table, we use

particular values of f and n from each domain to plot

where graphs of shape function in Figs. 4-7. It is clear from the

figures that the shape functions satisfy all the necessary

_ 3@n-p)(2n+1) conditions for a traversable WH. In this case, we obtain

, 48 .
B—4Bn+12n (48) the WH throat radius rg = 1.

Again, by considering Egs. (38) and (47), we obtain
and c; is the integrating constant. Without loss of gener- the energy conditions defined below.

*(4nan - 2aB(n +2)) . _a(12n(n+1)-pGn+ 1))k

e NEC: p+p, = A nd p+ p; A
« DEC: p—p, = 2a(B—Bn+ 12n(n+ 1))rk and p—p, = aB(n—1)+1273n+ 1))rk’
N Ay
4aB2n+ 1D)r
¢ SEC :p+[)r+2pt — _M’
Ay
[
where A =(B+8m)(B—4Bn+121), and violated for radial pressure and satisfied for tangential
__6B+4mmn-1 pressure across the entire spacetime. Moreover, from
B4n—1)—12r" Figs. 10 and 11, we conclude that the DEC is satisfied for

Again, for this case, we find the energy density from

the field equation (29). both pressures, whereas the SEC is violated.

_a(121-B)2n+ 1)k (49) V. EQUILIBRIUM CONDITIONS
Ay ' In this section, we consider the generalized TOV
equation [79-81] to find the stability of our obtained WH
Now, we consider particular values from each do- solutions. The generalized TOV equation can be written

main in Table 3 and plot a graph of energy density, as as
shown in Fig. 8. We find that energy density is positive

for 3t <n<i, n=1, and I <n<1; however, for other o’ .2

regions of #, it is violating. Therefore, we consider sever- T(P +pr)+ o + ;(Pr -p) =0, (50)
al particular values of n from 3! <n<i, n=1, and

1 <n<1 and plot graphs for the NEC, DEC, and SEC in  where @ = 2¢(r).

Figs. 9—11. It can be observed from Fig. 9 that the NEC is Owing to anisotropic matter distribution, the hydro-

(a) (b)
Fig. 4. (color online) Behavior of the shape function b4(r), flaring out condition #’(r) < 1, throat condition b(r)—r < 0, and asymptotic
flatness condition @ — 0 as r — oo for (a) n=-2.5 with 3=16 and (b) n = -2 with 8= 14. We consider « = 1 and set the unit of radius
as kilometers (km).
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(a)
Fig. 5.

(b)

(color online) Behavior of the shape function b(r), flaring out condition &'(r) < 1, throat condition b(r)—r < 0, and asymptotic

flatness condition @ — 0 as r— oo for (a) n=-1.5 with =14 and (b) n=-0.1 with 8= 1. We consider o = 1 and set the unit of radius

as kilometers (km).

(a)
Fig. 6.

(b)

(color online) Behavior of the shape function b(r), flaring out condition &'(r) < 1, throat condition b(r)—r <0, and asymptotic

flatness condition @ — 0 as r — oo for (a) n=0.25 with =6 and (b) n = 0.5 with g =12. We consider « =1 and set the unit of radius as

kilometers (km).

Fig. 7. (color online) Behavior of the shape function b(r),
flaring out condition &'(r) < 1, throat condition b(r)—r <0, and
asymptotic flatness condition @ — 0 as r— oo for n=2 with

B=13. We consider @ = 1 and set the unit of radius as kilomet-
ers (km).

static, gravitational, and anisotropic forces are defined as
follows:

dp, @ 2

Fr=-L Fe=-Zp+p), Fa==(p-pp. D
dr 2 r

To place the WH solutions into equilibrium,

Fj+Fy+ F, =0 must hold. Because, in this study, we as-

Energy density
‘
0.04
0.02f
0,00
-0.02}
-0.04}
L L L L L
0 1 2 3 4
r
Fig. 8. (color online) Behavior of p with respect to » for par-

ticular values of n = -2.5, -2, —1.5, -0.1, 0.25, 0.5, and 2, cor-
responding to = 16, 14, 14, 1, 6, 12, and 13, respectively.
We consider a=1 and set the unit of radius as kilometers
(km).

sume that the redshift function ¢(r) = constant, it will
cause the gravitational contribution F, to vanish in the
equilibrium equation. Hence, the equilibrium equation
becomes

Fy+F,=0. (52)

115101-11



Moreshwar Tayde, Zinnat Hassan, P.K. Sahoo et al.

Chin. Phys. C 46, 115101 (2022)

NEC for radial pressure

-0.02 4

— n=-0.1
— n=0.25 ]
— n=0.5

-0.06

0 i 2 s 4
Fig. 9.
« =1 and set the unit of radius as kilometers (km).

DEC for radial pressure

05F  h=—0A1
— n=0.25
— n=0.5

03f 4

0.4

p=lprl

02f ]

0.1f ]

L L L L L
0 1 2 3 4
r

Fig. 10.
« =1 and set the unit of radius as kilometers (km).

SEC
T

p+pr+2p;

Fig. 11.  (color online) Behavior of the SEC for n= —0.1,
0.25, and 0.5, corresponding to g=1,6, and 12, respectively.
We consider =1 and set the unit of radius as kilometers
(km).

Using Egs. (30), (31), (36), and (38), we obtain the
following equations for the hydrostatic and anisotropic
forces in the linear model using p, = wp:

S(ﬂ - 47‘[) 3(/3;47;)77) 4
o b= mel 1 Bw=2) 3)r "
h B+ 8m) (121w —B(w—2)) ’
(53)
F, = JaBCw) +B+AnGw + 1))r s 4 4

B+ 8m) (12w — B(w —2))

Furthermore, for the relation p,=np,, considering

NEC for tangential pressure
T

0.15
— n=-0.1
— n=0.25
0.10 — n=05
&
-
Q
0.05f g
0.00
. . . L A
0 1 2 3 4

r

(color online) Behavior of the NEC for n =-0.1,0.25, and 0.5, corresponding to =1, 6, and 12, respectively. We consider

DEC for tangential pressure

0.30F" T T T -
— n=-0.1

0.25F ]
— n=0.25

0:20p — n=05 7

£ o0sf ]

Q

0.10F 3

0.05F 3

0.00F 3

. . . . L

0 1 2 3 4

r

(color online) Behavior of the DEC for n=-0.1,0.25, and 0.5, corresponding to g=1,6, and 12, respectively. We consider

Egs. (30), (31), (45), and (38), the equations for the hy-
drostatic and anisotropic forces read as

Sprane-) g

_ lga(ﬁ+4ﬂ-)2(7’l — l)riﬂ@n—nf\zn
(B+ 8m)(B—4Bn+ 127)(B(4n—1) - 127)’

Fp=

(55)

_ 6B

- 6a(B +4n)(n—1)r sz
(B+8m)(B—4Bn+12m)

Fo= (56)

The graphs of hydrostatic and anisotropic forces for
both cases are depicted in Figs. 12 and 13. It can be ob-
served that these forces exhibit the same behavior but are
opposite to each other. These balanced developments in-
dicate that our obtained WH solutions are stable.

VI. FINAL REMARKS

WHs can act as tunnels that connect two spatially dif-
ferent regions separated by a spacelike interval of the
same spacetime manifold. They are currently a theoretic-
al possibility that has not yet been observed. Based on ad-
vances in gravity wave astronomy, one may be able to
conjecture a scenario in which the signatures of an astro-
physical WH may be detected. In GR, WH solutions of
interest (stable and traversable) suffer from a known
pathology where energy conditions are violated. The re-
quirement for exotic matter when one explores standard
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Hydrostatic & Anisotropic Forces for Linear Model

— Fp
— Fa

-0.05F

-0.10f

Fig. 12.
the unit of radius as kilometers (km).

Hydrostatic Force for Linear Model
T

. . .
2 3 4

r

(color online) Behavior of both the hydrostatic and anisotropic forces for p, = wp with w=-1.5. We consider a =1 and set

Anisotropic Force for Linear Model

T T T T 0.7 T T T T
0.0F 4
0.6F — n=-0.1
—0.2F ]
0.5F — n=0.25 |
04k ] — n=0.5
0.4 oaf 1
= <
“ _osf b “ osf 3
— n=-0.1 0o
-0.8f 4 E 3
— n=0.25
0.1F ]
-1.0F — n=0.5 4
0.0F
. . . . . . . . L L
0 1 2 3 4 0 1 2 3 4
r r
Hydrostatic & Anisotropic Forces for Linear Model
T T T
010p — n=-0.1 1
— n=0.25
0.05F 4
— n=0.5
©
W
o 000
&
-0.05F ]
-0.10f 1
~0.15 1 . . .
0 1 2 3 4

Fig. 13.
us as kilometers (km).

model extensions in the context of classical GR is a signi-
ficant hurdle. However, one can now turn to modified
versions of gravity to solve issues regarding WHs. The
study of WHs in modified theories of gravity makes it
possible to derive stable solutions without compromising
energy conditions.

The modified theory of gravity f(Q,T) has success-
fully explained late-time acceleration [69] and matter-an-
timatter asymmetry [68]. It is worth asking whether mod-
ified theories of gravity are useful in the context of astro-
physical objects such as WHs, and if so, which modified
versions support stable, traversable WHs. This is the mo-
tivation behind studying WH solutions in the recently
proposed f(Q,T) gravity. Because f(Q,T) gravity is a
novel approach, it may provide new insights into astro-
physical objects such as BHs and WHs. In our study, we
set up the corresponding field equations in f(Q,T) grav-
ity. We then conduct our analysis in two phases: (i) WH
solutions with a linear EoS, and (ii) anisotropic WH solu-

r

(color online) Behavior of both the hydrostatic and anisotropic forces for p, = np,. We consider @ = 1 and set the unit of radi-

tions. Furthermore, we study these solutions under two
functional forms of the f(Q,T) model; we consider lin-
ear f(Q,T)=aQ+pT and non-linear f(Q,T) = Q+10%*+
nT. Our aim is to find exact WH solutions for both mod-
els. Because our obtained field equations are more com-
plex than solutions in classical GR, finding exact solu-
tions with a linear EoS and an anisotropic relation is a
challenging task for both models. We find exact solu-
tions for both cases under the assumption of linear
f(Q,T). In the case of the non-linear model, finding ex-
act solutions is not analytically feasible for both EoSs.
Solutions with the linear EoS for the linear form of
f(Q,T) are obtained explicitly. We find that the shape
function is in power-law form. Moreover, to satisfy the
asymptotic flatness condition, several domains of @ and S
are found, as shown in Table 1. We choose several partic-
ular values of @ and f from Table 1 and show the behavi-
ors of the shape functions. We observe that all the neces-
sary conditions of the shape functions are satisfied, which
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Table 1. Possible domains of w and f. Table 3. Possible domains of # and n.
Model Parameters Model Parameters
o B n B
127w 127 127n
(—00,-1) (—oo,w_z)U(IZmoo) (=00,-2) (4n—1’n+2)
127w —4r
-1,2 _ ol
-1.2) (27 121) 2 (57
2 (—c0,127) (_2,;1] (_Oo’ 127rn))u( 127 ,Oo)
1270 2 n+2 4n—1
(2,00) (=00, 12ﬂ)U( ,oo) 11 127 127tn
w— — = — 00, U ,00
2°4 4n—-1 n+2
1 4r
— —,00
4 3
.. 1 127n  12n
Table 2. Summary of the energy conditions for p, = wp. (Z’ 1) (n+2, . 1)
Terms Interpretations 12 127n
(1,00) ,
w (—o0,—1) (-1,2) dn—1"n+2
12 12
; — o0, 2Ny (127, 00) 0 12x
w-2 w—-2
p satisfied violated Furthermore, we study WH solutions for the aniso-
o+ pr violated violated tropic case with both models of f(Q,T). Our analysis

L o shows that for the non-linear model, it is difficult to find
p+p: satisfied satisfied . .

s exact solutions. However, for the linear model, WH solu-
pbr satisfied violated tions for an anisotropic case are obtained, and we obtain
p=pi satisfied violated the shape function in power-law form. In Table 3, we

p+Dr+2ps violated satisfied show all the possible domains of n and f that satisfy the

is necessary for a traversable WH. Furthermore, we veri-
fy the behavior of energy density in both the phantom and
quintessence regions and find that it exhibits a positively
decreasing behavior in the phantom region, whereas it is
violating in the quintessence region. Keeping this in
mind, we choose several particular values of @ and plot
graphs of energy conditions. We observe that the NEC is
violated for radial pressure and satisfied for tangential
pressure. The DEC is satisfied, whereas the SEC is viol-
ated, throughout spacetime. In Table 2, we summarize the
behavior of the energy conditions.

asymptotic flatness conditions. Figs. 4—7 show that all the
necessary conditions of shape functions are satisfied
within each of the domains from the table. Moreover, a
plot of energy density is depicted in Fig. 8, and we find
that for particular values of n, the energy density is posit-
ive. Considering these values, we plot graphs of the NEC,
DEC, and SEC. It is observed that the NEC and SEC are
violated, whereas the DEC is obeyed throughout space-
time in this f(Q,T) gravity. A summary of the energy
conditions for this case is given in Table 4.

For completeness, we check the stability of our ob-
tained WH solutions for both cases. From Figs. 12—13,
we can conclude that the obtained WH solutions are

Table 4. Summary of the energy conditions for p, =np,.
Terms Interpretations
-1 -11 1 1
—co, -2 - -2, — —, = - -1 1,
S (>3] (53) SN U
127 127n —4r 127n 127 127 12nn 4 127n 127 127 127n
B s —® — 0o, U ,00 — 0o, U ,00 - s >
4n—-1 n+2 3 n+2 4n—-1 4n—-1 n+2 3 n+2 4n—1 4n—1 n+2
P violated violated violated satisfied satisfied satisfied violated
pP+Dpr violated violated violated violated violated violated violated
p+p: satis fied satis fied satis fied satis fied satisfied satisfied satisfied
P—Dr violated satis fied satis fied satis fied satis fied satis fied violated
P—Di violated violated violated satis fied satis fied satisfied violated
P+pr+2p; satisfied satisfied satisfied violated violated violated satisfied
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stable. Throughout our study, we consider the redshift
function ¢(r) = constant to avoid the presence of an event
horizon. It would be interesting to study WH solutions
with a non-constant redshift function and different matter
sources in f(Q,T) gravity.
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