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Abstract: We explore the effects of the density dependence of symmetry energy on the crust-core phase transition

and dynamical instabilities in cold and warm neutron stars in the relativistic mean field (RMF) theory with point-

coupling interactions using the Vlasov approach. The role of neutrino trapping is also considered. The crust-core

transition density and pressure, distillation effect, and cluster size and growth rates are discussed. The present work

shows that the slope of symmetry energy at saturation, temperature, and neutrino trapping have non-negligible ef-

fects.

Keywords: crust-core transition, dynamical instabilities , point-coupling interactions, symmetry energy

DOI: 10.1088/1674-1137/abf99b

I. INTRODUCTION

Neutron stars (NS) consist of a solid crust at low
densities and a homogeneous core in the liquid phase. It
is known that the uniform liquid becomes unstable with
respect to small-amplitude density oscillations when the
density decreases from the high-density homogeneous
core to the inhomogeneous crust. Consequently, phase
transitions occur that are associated with the liquid-gas
phase transition in asymmetric nuclear matter in the pres-
ence of electrons. The properties of the crust and crust-
core phase transition play an important role in under-
standing certain astrophysical observations [1-5].

It is well known that the relativistic mean field (RMF)
theory can successfully describe many nuclear phenom-
ena and can explain the saturation mechanism of nuclear
matter and the strong spin-orbit interaction in finite nuc-
lei in a consistent way [6-10]. In recent years, instead of
the traditional RMF theory, which is based on the effect-
ive interaction between Dirac nucleons via the exchange
of mesons, the RMF model with point-coupling (PC) in-
teractions [11-13], which neglects mesonic degrees of
freedom and considers only interactions with zero range,
has become an alternative approach for the description of
nuclear matter and finite nuclei. It allows a simpler treat-
ment of exchange terms to study the effects beyond the
mean-field for nuclear low-lying collective excited states
and provides more opportunities to investigate the rela-
tionship with non-relativistic approaches.
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Within the thermodynamic approach, Ref. [14] has
used a widely used density-dependent parametrization of
the PC model, DD-PC1 [12], to study the crust-core
transition. In recent years, the crust-core transition has
also been studied within the Vlasov formalism method
[15-18]. Ref. [17] shows that the Vlasov approach gener-
ally gives a lower prediction of the transition density than
does the thermodynamic approach. Moreover, given
small oscillations around the equilibrium state in the
Vlasov approach, the imaginary frequency of the disper-
sion relation characterizes the unstable collective modes.
Ref. [19] points out that the thermodynamic approach
corresponds to the limit with the wave vector of collect-
ive modes tending to zero. Thus, the Vlasov approach is
better than the thermodynamic one for investigating the
dynamical instabilities of finite-size collective modes,
which have been focused on by many works within vari-
ous models [15, 16, 19-22]. In this work, based on the
parametrization DD-PC1, we use the Vlasov formalism
method to investigate the effects of the density depend-
ence of the symmetry energy on the crust-core transition
and dynamical instabilities appearing at the transition,
considering the influences of finite temperature and neut-
rino trapping as well.

This article is organized as follows. In Sec. II and the
Appendix, we describe the equations necessary for the
present work. In Sec. III, the calculated results and some
discussion are provided. Finally, the summary is presen-
ted in Sec. IV.
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II. THE FORMALISM

In this work, the Lagrangian for DD-PC1 parametriz-
ation reads

£ =g (ia,l —eA, 1_—2”) — My

1 - 1 - -
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where ¢ is the Dirac spinor of baryons and A, denotes
the electromagnetic field. The coupling parameter § is
considered to be constant, while as in the various spin-
isospin channels are analytical functions with respect to
the baryonic density p alone.

The effective one-body Hamiltonian can be given by

M2 +(F-Vi2+V0 | fori=p.n,

h; = 2

\/m§+(ﬁ+eA_))2—er, fori=e,

where the nucleon effective mass is defined as
M* = M+ZXg, and the scalar and vector self-energies, X
and V¥ = Ei’,‘ +3, in which the rearrangement term X
arises from the variation of the density-dependent vertex
functionals with respect to the nucleon fields in the dens-

ity operators, which can be given by

Xs =asps —0sAps , (3)
Iy =av it rawTify +e Uyve “4)
Xk = (@5 + Qv+ jan i) 20y - Q)

The Vlasov equation describes the time evolution of
the one-body phase-space distribution functions for pro-
tons, neutrons, and electrons, denoted by fi.(7, p,1), as

ag)“_iti+{ﬁiahii}=0’ i:p7n,e7 (6)

where +(—) denotes particles (antiparticles) and {, } de-
notes the Poisson brackets. Small deviations of the distri-
bution functions §f around the equilibrium state can be
obtained with generating functions S as

dfOii
dp? ’

Ofix ={S iz, foiz} = {Sii»Pz} (7

where fy; are equilibrium distribution functions. Of par-
ticular interest are the longitudinal modes, with mo-
mentum k and frequency w, described by the ansatz

S (7, p,1) Si .(p,cos6)
8%g,0ViH 555 sVH -
N . — S w# w. el(wt—k?)’ (8)
6ps. 6,64 603,870,614,
O0AH 5AH

where 6 is the angle between j and k. In terms of the
generating functions, the linearized Vlasov equations for
éf can be obtained. After transforming the unknowns S,
to density oscillations, we obtain the following matrix
equation as

5P
0Pwp
o |=0, )
SPwn
OPwe

M(w)

where 6p;,, and 6p;,, are the amplitudes of the oscillating
scalar densities of protons and neutrons, respectively, and
0Pwps OPwn, and 6p,. are the amplitudes of the oscillating
proton, neutron, and electron densities, respectively. The
dispersion relation of collective modes is obtained from
the determinant of M(w). The derivation and the entries
of M(w) are listed in Appendix A.

III. RESULTS AND DISCUSSION

In this work, the parameters of the isoscalar channels
for DD-PC1 remain unchanged so that the properties of
the saturated symmetric nuclear matter, namely, the satur-
ation density, the binding energy, and the compression
modulus, can be kept fixed. The symmetry energy for
DD-PCl1 is given by

= —=—+Tp, (10)

where kp is the Fermi momentum. In this work, we vary
the density dependence of symmetry energy by adjusting
the parameters of the isovector channels, i.e., b,y and d;y
in set C in Table 1 in Ref. [12], while keeping the sym-
metry energy at saturation unchanged by fixing «;y at sat-
uration density in Eq. (10). We plot the symmetry energy
Em as a function of the density for several values of the
slope parameter of Egy, at saturation (parameter L) in
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Table 1.

Crust-core transition densities [fm —3] for g-equilibrium neutrino-free matter (¥, = 0) and neutrino-trapped matter (¥; = 0.4)

for several slopes at saturation L and temperatures 7 including 7 =0 MeV. The results in italic type are for the thermodynamic method,

and the other results are for the Vlasov approach. Those calculated with the original DD-PC1 parametrization are in bold type.

L/MeV T=0 MeV 7=0 MeV 4 MeV 8 MeV 12 MeV
29 0.096 0.091 0.087 0.079
42 0.091 0.085 0.077 0.058
55 0.086 0.079 0.063
=0 70 0.079 0.072
86 0.073 0.065
103 0.066 0.059
29 0.095 0.087 0.086 0.081 0.07
42 0.094 0.086 0.085 0.08 0.068
55 0.094 0.085 0.084 0.079 0.066
fi=04 70 0.093 0.084 0.083 0.078 0.065
86 0.093 0.084 0.083 0.077 0.063
103 0.093 0.083 0.082 0.076 0.062
Table 2. Crust-core transition pressures [MeV fm —3] for several slopes at saturation L and temperatures 7 including 7 =0 MeV. The

results in italic type are for the thermodynamic method, and the other results are for the Vlasov approach. Those calculated with the ori-

ginal DD-PC1 parametrization are in bold type.

L/MeV T=0 MeV 7=0 MeV 4 MeV 8 MeV 12 MeV
29 0.265 0.225 0.275 0.42
42 0417 0.349 0.346 0.378
55 0.489 0.393 0.284
Y, =0

70 0.485 0.365
86 0.404 0.282
103 0.283 0.182
29 1.113 0.93 1.004 1.161 1.242
42 1.131 0.93 1.006 1.152 1.211
55 1.148 0.934 1.007 1.144 1.182

Y, =04
70 1.167 0.936 1.007 1.134 1.151
86 1.182 0.936 1.004 1.122 1.123
103 1.192 0.932 0.998 1.108 1.096

Fig. 1. For larger L, Eg,, is larger at supersaturation
while smaller at subsaturation densities in comparison
with another L. This density dependence of Egnm can
likely explain the correlations between L and the crust-
core transition.

In Tables 1-2, we show the transition densities n, and
corresponding pressures P; at the crust-core transition, re-
spectively. The transition is defined as the crossing
between the B-equilibrium line and the spinodal surface.
The thermodynamic spinodal region requires the free en-
ergy curvature matrix to be negative, while the Vlasov
spinodal surface corresponds to the solutions of the dis-
persion relation with frequency w =0 and moment k =75

MeV, where the chosen value of & in this work approxim-
ately defines the maximal spinodal region.

In Table 1, with the original DD-PC1 parametrization,
the calculated n, for T =0 MeV with the thermodynamic
method are 0.079 and 0.093 fm —3 for neutrino-free and
neutrino-trapped  B-equilibrium matter, respectively,
while these values are approximately 10% larger than
those determined using the Vlasov formalism method,
which are 0.072 and 0.084 fm 3, respectively. The anti-
correlation of n, and L has been found in the literature us-
ing various methods [23-31]. Similarly, this table also
shows that small L corresponds to a large value of n,. It
can be seen that n, decreases with increasing temperature.
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Fig. 1. Symmetry energy Eqm as a function of density p for
several values of L. Eyn at saturation is fixed at the original
value (33 MeV) for DD-PC1. Thick curves are for original
DD-PC1 parametrization with L =70 MeV.

Moreover, in the crust of neutrino-free matter, we see that
there is no nonhomogeneous phase at temperatures great-
er than 4 MeV for L > 70 MeV, and even for very low L,
no nonhomogeneous phase exists at 7 = 12 MeV. This is
primarily a result of the fact that the spinodal region can
almost reach pure neutron matter at zero temperature,
while it is more isospin symmetric for finite temperatures
(see Fig. 1 of Ref. [20]). Meanwhile, the proton fraction
of B-equilibrium neutrino-free matter is quite small at
subsaturation, and the B-equilibrium line can only pass
across the spinodal region marginally. Therefore, the
crust-coretransitionissusceptibletochangesintemperature.
Figure 1 shows that a larger L corresponds to a smaller
symmetry energy at subsaturation densities, thus favor-
ing more neutron-rich matter for the homogeneous phase
at subsaturation. As a result, the nonhomogeneous phase
can only exist at a low temperature for a large L. By con-
trast, the proton fraction in the matter with trapped neutri-
nos is quite large, i.e., ~0.3. Therefore, Table 1 shows
that the transition densities do not differ much for vari-
ous L and the nonhomogeneous phase still exists until
T =12 MeV, when neutrinos are trapped. This result
means that the nonhomogeneous phase can exist at high-
er temperatures in the crust of a protoneutron star com-
pared with that after neutrino outflow.

In contrast with n,, the dependence of P; on L is non-
trivial, as shown in Table 2. At T =0 MeV, for ¥, =0, P,
increases with increasing L in the small L region ( L < 55
MeV), and the opposite behavior occurs for L » 55 MeV.
This trend is similar to those observed in Refs. [17, 28,
29], while dissimialr to those in Refs. [27, 31]. For
Y; = 0.4, the trend for the thermodynamic method is dif-
ferent and P; increases monotonically with increasing L.

Moreover, it is observed that P, can move downward
with increasing L when the temperature increases. These
phenomena may arise from several competing effects, as
discussed in Refs. [28, 29], and can be model dependent.
It is known that the unstable modes correspond to the
solutions of the dispersion relation with imaginary fre-
quencies w =i, where T" defines the exponential growth
rate of the instabilities. With these solutions, we study the
instability direction of the modes and the distillation ef-
fect, i.e., where the denser phase in nonhomogeneous
nuclear matter prefers to be isospin symmetric. We plot
the ratio of the proton over neutron density fluctuation
0pp/6pn (upper panel) and the corresponding growth rate
of collective modes (lower panel) at T =4 MeV as a
function of the wave vector & and the density p in Fig. 2
and Fig. 3, respectively. The proton fraction y, =0.3
chosen in both figures is close to the value in B-equilibri-
um matter with neutrino trapping. At large density
(p=0.5p0) and small k (k=10 MeV), both figures show
small growth rates. We see in Fig. 2 that large L corres-
ponds to a large distillation effect at p = 0.5p9. With de-
creasing density, the opposite behavior is found. This
phenomenon can be seen in more clearly in Fig. 3, which
shows that for p > 0.05 fm~3, the large L increases the
distillation effect, while at lower densities, the opposite
occurs, i.e., lower L results in larger 6p,/6p,. This result
indicates that in the nonhomogeneous region near the in-
ner boundary of the crust, where the densities are above a
certain value, e.g., about 0.05 fm ~3 in this case, more
proton-rich clusters are preferred for larger L, while in the

p=0.5p,

0 100 200 100 200 100 200 300
k (MeV)

Fig. 2. Ratio of the proton over neutron density fluctuation
Spp/Spn (upper panel) and corresponding growth rate of col-
lective modes (lower panel) as a function of the wave vector
k, plotted for the proton fraction y,=0.3, T=4 MeV, for
p=0.15p9, 0.3pp, and 0.5p0. The saturation density po = 0.152
fm=3. Thick curves are for original DD-PC1 parametrization.
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Fig. 3. Same as Fig. 2, but as a function of the density p for

wave vector k=10, 75,150 MeV.

lower-density region of the crust, the larger L leads to
more neutron-rich clusters.

The most unstable mode is taken as the mode with the
largest growth rate |w|max, Which drives the matter to the
nonhomogeneous phase. Half of the wavelength A,y /2
associated with this mode is related to the most probable
size of the clusters that are formed by the perturbation.
We plot |wlmax (upper panels) and the corresponding
Amax/2 (lower panels) as a function of density in B-equi-
librium matter for free (¥, =0) and trapped neutrinos
with a lepton fraction ¥;=0.4 in Figs. 4 and 5, respect-
ively, in which the results calculated with temperature
T =0 MeV, finite temperature 7T =4, 8, 12 MeV, and
several values of L are chosen for comparison. We see
from Fig. 4 that, except for very low densities, e.g.,
0 <0.02 fm™3, a smaller value of L corresponds to alar-
ger growth rate and smaller size of the clusters. With de-
creasing L, not only are the largest value of |w|yax and the
smallest size of the clusters shifted to larger densities, but
the density range for instabilities also increases. These
phenomena can still be seen in Fig. 5. However, we see
that the differences among various L are small because of
the large proton fraction for matter with trapped neutri-
nos. Both figures show that the effects of the temperature
are large and globally reduce the instability region and
the growth rate while increasing the cluster size. The
largest value of |w|max and the smallest clusters are also
observed to shift to larger densities with increasing tem-
perature. Comparing these two figures, we see that the
neutrino trapping leads to a large growth rate and small
clusters, e.g., at 7= 0 MeV, the smallest size of clusters is
approximately 8-10 fm for neutrino-free matter, while
this value is ~ 6 fm when including neutrinos.

——L=29MeV | T=4 Me' T=8 MeV

o
g
<
5
Y =0
0.02 0.04 0.06 0.08 0.02 0.04 O.éJG 0.08 0.02 0.04 0.06 0.08 0.10
p (fm”)
Fig. 4. Growth rate of the most unstable modes (upper pan-

el) and corresponding size of clusters (lower panel) as a func-
tion of density for g-equilibrium neutrino-free matter Y, =0.
Thick curves are for original DD-PC1 parametrization.

T p— T T
—— L=29 MeV |
***** L=42 MeV

L=55 MeV
——L=70 MeV
-~ L=86 MeV
---—-1L=103 MeV}

(MeV)

max

lo]

/2 (fm)

‘max

A

L L L L
0.00 0.02 0.04 0.06 0.08 0.10

p(fm”)
Fig. 5. Same as Fig. 4, but for g-equilibrium neutrino-

trapped matter ¥, = 0.4.

IV. SUMMARY

In summary, we have used the Vlasov formalism
method to explore the effects of the density dependence
of symmetry energy on the crust-core transition and dy-
namical instabilities in cold and warm neutron stars in the
RMF theory with PC interactions. The role of neutrino
trapping has also been considered. We see that n, de-
creases when L or the temperature increases, while neut-
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rino trapping can diminish this effect due to the large pro-
ton fraction. However, their effects on P; are nontrivial
and model dependent. We observe that the clusters in the
nonhomogeneous region near the inner boundary of the
crust are preferentially more proton rich for larger L at
p2 0.05 fm~3, while in the lower-density region of the
crust, the larger L leads to more neutron rich clusters.
This phenomenon may affect the study of transport prop-
erties in the NS crust, such as electrical conductivity. The
dynamical instability region, the size of clusters, and the
growth rates have been estimated. The slope at saturation
L, temperature, and trapping neutrinos have non-negli-
gible effects. Finally, it needs to be mentioned that the
nonhomogeneous phase, i.e., pasta phase, probably ap-
pears in the crust-core transition, where the spherical
symmetry hypothesis within the Vlasov approach is
thought to be broken. Thus, the conclusions for the
clusters in the crust-core transition in this work need to be
reexamined within other methods, e.g., as in Refs. [28,
29].

APPENDIX A

The oscillating baryon and scalar densities are given

by

-1 i i i i i
[M*6%S (1N + 1 )+ 6V (2 -T2

OPwi =2 T
—E(svju(ﬂ’ ~I*)],i=pn
(A1)
-M" S 70i 0i i o rli 1i
605, = > 2T[M 6xS (1%, — 19 ) + sV, 4117
- E(SV’ (I + 1)1+ c56%s  i=p,n
(A2)

where %5, V%, 6Vi come from the variations of the
scalar and vector self-energies with respect to the oscillat-
ing scalar and baryon densities in Egs. (3)-(5) and

2

f p(f01+ + fOl— s

with € = 4/p? + M*2, and the oscillating electron density is
given by

L ZT(ﬂe — L)1 -w? /K, (A3)

with

(W? = k*)SAY = —e(5pwp — Spuwe) » (A4)
and
- f € Lo fors(foir — e, (AS)
with
p/€ X
I,+(€) = A
e(€) f Tt (A6)

in which m; denotes M* for a nucleon and m, for an elec-
tron. After straightforward but lengthy derivations, Egs.
(A1)-(A3) can be placed into a matrix equation, and the
entries of M(w) in Eq. (9) are given by

ail ap a3 a4 ds
a1 Ay ax Gy ax
Mw)=| a1 a3 a3 au 0 |. (A7)
ay1 ayp a3 asy 0
0 asy 0 0 ass

When the determinant of M(w) is zero, the dispersion re-
lation of collective modes is obtained, and the corres-
ponding ratio of the proton over neutron density fluctu-
ation dp,/dp, is given by

5/)1, ajlA+apB+ayy

= s (A8)
0Pn anC+aizD+app —aisasy/ass

with

azz3a44 —az4a43
b
az1a43 — azzasy

—as1daqq
b
az|1a43 — azzaq)

asaaqy
A = =

azzdqn —ad3na43 azpdq) —dzaqn

C= D:

as1a43 —azas a31a43 — azsasn
For zero temperature, Eqs. (A1)-(A8) are still applicable
in the present work when one replaces I". by

Vll

I"’ =0, = —€plo(er), (A9)

in which er is the Fermi energy at zero temperature.

It is worth pointing out that in addition to the zero-
range PC RMF models, the above equations Eqgs. (Al)-
(A9) can apply to finite-range meson-exchange RMF
models. For the PC RMF models, 625, 6V, and 6V! in
Egs. (A1)-(A2) are functions with respect to the oscillat-
ing scalar and baryon densities, given by
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625) :Cs()épi; +¢51000 »
1+ T

SV =C516p5, + Chdpu + ChyOpus +e SAY
. . . 1+71;
oV, :% c’vlépw+c;)]6pw3 +e 2T1 6A2) ,

where 6p., = 8pwp + 0Pwns 0Pw3 = OPwp — OPwn, and we have
defined the following quantities as

2 2 ’
cs0 =as +0s(w -k ), Cs1 = AgpPs
2 2 2
i Ps Py P3 i
1 — ’ " 17 17 3 ’ 1
Cho =ay +2ay,py +ag > +av7 +atv? +a,yp37
2 ) ’ 2
P g5 + AyPy + APy
Ch =ay + .
2py
i _ i ’ i i P
Cpo =T + QP35 Cpp =awT, (i=p.,n)

with 77 =1, 7" =-1, p3 =p,—p,. For meson-exchange
RMF models, however, the variations of scalar and vec-
tor self-energies are functions with respect to the oscillat-
ing meson fields. The equations of motion of mesons
have to be used to replace the oscillating meson fields by
the oscillating densities in Egqs. A1-A2 to obtain the
entries of M(w).
The coefficients g;; used in this work are given by

% 0 0 1
an = 1+ GE(M oI oh — I0) + e (L + 11))

P Op _ 40p P 4
an —GS{M*csl(Iw+ 1)+ [cvo vy
2

w p e Ip , 4lp p
+ E(C“ +cp1) + ﬁ](lm +1w_)} -8y

o) 0 0 1 1
a3 =Gy(M ey —1,0) +ca) +1,7) - g5

P . Op Op P P
a14—GS{M*LH(IM—Iw_)+[cv0—cp0

W’ p Ip |, J1p p
s e —dp|ah i) -g),

with

2
(s | 1

ars = -G§ k—z(lwﬁ +17),

_ * Ip 1p 2p 2p
ay1 = Gy(M oy, +1,2) + e Ly — 152))

* 1 1
an =1+ GV{M ca(Lh +10)+ [cfo +c§0
2

2
w e 2 2
+ 2z en +ep)+ p](lm —Iw’i)} ,
_ % 1p 1p 2p 2p
axy =Gy(M cso(lyy +1,-) + ey —15,2))
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1 1
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+ -l -2,

2
e
axs = _GVﬁ(Ifﬁ- —Iip) ,
az1 = GH (M eso(I20 =12+ e (I + 1)) — gt

az =G% {M*cﬂ -+ [c’so + CZO
2
w
+ (e + ch)](Ij)’ﬁr + 1;)"_)} —g",
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asg —GS{M C51(1w+ —Iw_) + [CVO - ch

W’ 1 1
+ ﬁ(cvl - ch)](Iw'fr +Iw”_)} -8y,

ag = Gy(M eI + ) + e (12 = 121))

an :G‘/{M*csl(lgﬁr + Ii,”_) + [cﬁo + CZO

w? 2 2
+ tenrd|uzi -2}

agy = Gy(M eo(I + 1) + e (12— 1P1))

ass =1+ Gv{M*Csl an+rmy+ [c’vlo —c

% 2 2
+ ﬁ(cvl - CZ[)](Iwri— _Iwn—)} )

e 2 2
asy = _GVE(Iwi -1},

2
e
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