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Abstract: The two-photon-exchange (TPE) effect plays a key role in extracting the form factors (FFs) of the pro-

ton. In this work, we discuss several exact properties of the TPE effect in the elastic ep scattering. By taking four

low energy interactions as examples, we analyze kinematical singularities, asymptotic behaviors, and branch cuts of

TPE amplitudes. The analytical expressions clearly indicate several exact relations between the dispersion relation

(DR) and hadronic model (HM) methods. This suggests that the two methods must be modified to general forms,

while novel forms yield the same results. After the modification, new DRs include a non-trivial term with two singu-

larities. Furthermore, new DRs automatically include contributions due to the seagull interaction, meson-exchange

effect, contact interactions, and off-shell effect. To analyze the elastic e*p scattering data sets, the new forms must

be used.
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I. INTRODUCTION

The proton represents the unique stable hadron and is
one of the elemental constituents of our world. Know-
ledge of its properties provides an important base to un-
derstand the world. In the last twenty years, our know-
ledge on its structure has been significantly improved;
however, some puzzles remain. The electromagnetic form
factors (EM FFs) of the proton are two of the most ele-
mental and well-defined non-perturbative quantities re-
flecting its structures. Precise experimental data sets of
the elastic e*p or up scattering [1-11] are necessary to
extract the EM FFs of the proton. The two-photon-ex-
change (TPE) effect is key to analyzing and understand-
ing these precise experimental data sets. Since 2003, nu-
merous theoretical dynamical methods and model inde-
pendent analyses have been proposed and applied to es-
timate the TPE contribution, such as the hadronic model
(HM) method [12-14], GPDs method [15, 16], dispersion
relation (DR) method [17-23], perturbative QCD [24, 25],
soft collinear effective theory [26], chiral perturbative
theory [27], and parametrization method [28-32].
However, this is still far from the accurate estimation of
the TPE contribution.

To analyze the experimental data sets below a few
GeV’, the HM and DR methods are usually employed. In
the HM method, the interactions between the photon and

the intermediate states (such as nucleon and A(1232)) are
constructed to estimate and manifest the TPE amplitude.
In the DR method, only the interactions between the
photon and the on-shell intermediate states (such as nuc-
leon, A(1232) and 7N continuum) are used to estimate the
imaginary part of the TPE amplitude in the physical re-
gion. After analytically continuing the imaginary part of
the TPE amplitude to the unphysical region and combin-
ing it with the asymptotic behavior of the TPE amplitude,
the real part of the TPE amplitude is obtained. This
means that the DR method only uses the on-shell FFs. It
is often argued that this is a considerable advantage of the
DR method compared with the HM method, as the latter
may include off-shell information. Another advantage of
the DR method is the good behavior of the TPE contribu-
tion in the Regge limit. The HM method results in un-
physical behavior in the Regge limit when excited inter-
mediate states (such as A(1232)) are considered. Owing
to these advantages, the DR method has recently been
widely accepted and applied to analyze the experimental
data sets [21-23]. However, this does not mean that the
DR method is a perfect and uniquely reliable method. For
example, two different DRs are used in Refs. [17-21] and
Ref. [22], and the contributions from the meson-ex-
change effect [33-36] are not included.

In this study, we first analyze the analytical struc-
tures of the TPE amplitudes in four typical and general
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toy interactions. Because these interactions are valid at a
low energy, we must use them to check low energy beha-
viors of the TPE amplitudes by the DR method. The de-
tailed comparison and analysis clearly show some import-
ant properties on the TPE contributions by the DR and
HM methods: (1) the DR and HM methods used in the
references must be modified to general forms to correctly
include the contributions from the seagull interaction,
meson-exchange effect, contact interactions, and off-shell
effect; (2) after the modification, the new DRs include a
non-trivial term with two singularities; (3) the two meth-
ods after the modification yield the exact same results.

II. BASIC FORMULA

In the limit m, — 0, the amplitude of the elastic ep
scattering with C, P, T invariance, Lorentz invariance,
and gauge invariance can be written as

3
Miep = ep)= Y FiMi, (1)

i=1

where all the dynamics are absorbed in the coefficients F;
and the three independent invariant amplitudes M; are
defined as

My =Mylusy,ullugy  usl,
Mo =[uz(ff2 + [ ur1[uguz],
Mz =Myluzysyu llusysy uz]. (@)

Here, we have shortly written u(p;,m;,h;) and u(p;,m;,h;)
as u; and u;, p1, are the momenta of the initial electron
and proton, p34 are the momenta of the final electron and
proton, h; are the helicities of the corresponding spinors,
my3 =ni and mpy4 = MN.

One can calculate the coefficients #; by solving the
following algebraic equations:

;
DUMM =) T FMM. (3)

helicity i=1 helicity

After some simple calculations, the coefficients #; can be
expressed as

Fi= DDy Y. MM, @)
J

helicity

where D;j = Yhelicity MM and are only dependent on the
expressions of M;. In the practical calculation, when ¥;
exhibits UV divergence, we continue the spinors in M; to
d dimension to maintain the consistency in the full calcu-
lation. In the four dimensions, the matrix D! is ex-

pressed as
» 1 gu §12 %3
el w2 ©
with

di =(4M2 - +v2),

dy =M} (* — 1(4M% + 1)),

333 =— t(v2 + v?),

312 =;121 = —2M§,(v2 +vf),

di3 =ds; = 2t(4M3% — 1),

dy =d3y = —AMtv, (6)

where we define v = (p; + p3)- (p2 + pa), t =(p1 — p3)?, and
vy = [-1(4M3,—1). D' has two kinematic singularities
in the unphysical region when v — +v;. The similar sin-
gularities have been discussed in Ref. [21] and are dir-
ectly neglected when applying the DRs. These kinematic
singularities are not physical poles but related with the
definition of ¥; in the physical region. Usually, such kin-
ematic singularities are cancelled by the corresponding
factor in ZMM;, while in some special cases, this can-
cellation does not happen, and we show this in the fol-
lowing.

In the one-photon exchange (OPE) approximation, the
amplitude M) corresponding to the Feynman diagram
in Fig. 1 can be expressed as follows:

1 F
1 2 L = 2
M) = ¢ @[I/BY/AMI] us(Fiy" + MO'WC]\/)MZ s (N

with F;, as the electromagnetic FFs of the proton. The
expressions for the corresponding coefficients can be eas-
ily obtained, as follows:

dra, 1 2na
?'(17): € Fi+F , ?-(7):_ eF,
| MNQZ( 1+F), 7, Myor 2
7 =0, (8)

with a, = ¢?/4x. The final results Ti(ly) are free from kin-
ematic singularities in ©~! when 7—7.(1” continues to the
complex plane of v. In contrast, 7_:‘(17) are only dependent
on Q?, and their imaginary parts are exactly zero. This
means that they obey the once-subtracted DRs on v.
When going beyond the OPE approximation, the TPE
effect must be considered. In this study, we do not con-
sider TPE contributions from the baryon resonances and
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Fig. 1. One-photon-exchange diagram for elastic ep scatter-
ing.

N continuums, as in principle, their contributions can be
handled in a similar manner. In this case, there are four
types of dynamical contributions shown in Fig. 2, where
(a,b) are the usual box and crossed-box diagrams, re-
spectively, (c) is the seagull diagram, and (d) refers to the
meson-exchange effect. For the meson-exchange effect,
in principle, one must consider the coupling between
mesons and two photons, like the triangle diagram in Fig. 3,
which is discussed in Refs. [33-39]. Meanwhile, after the
loop integration, the final results can be expressed in a
general form as in Fig. 2(d). For simplicity, here, we dir-
ectly take Fig. 2(d) as an example to discuss the analytic-

€ (Pl ) ¢ (103)

v v

P(p2)

meson

(c) (d)
Fig. 2. Possible two-photon-exchange effects in elastic ep
scattering, where only the nucleon intermediate state is con-
sidered with the () box, (b) crossed-box, (c) seagull, and (d)

meson-exchange diagrams.

!/

e e
1
1 meson
/
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Fig. 3. Triangle diagram for meson-exchange contribution
via two-photon coupling.

al TPE property. The detailed discussions on the mag-
nitudes of the meson-exchange contributions can be
found in Refs. [33-39] by the phenomenological models'
calculation or the fitting with experimental data sets.

Due to crossing symmetry, one has the following gen-
eral relations when 7 < 0:

F5 D) == F5 V1),

T«;a,c,d)(t’ V+) =7:3(b,c,d)(t’ —V+), (9)

where v* =y +i0*, and we use ﬁ(“’b’c’d)(t, v*") to refer to
the coefficients of the TPE amplitudes corresponding to
the diagrams (a,b,c,d) in Fig. 2.

In Refs. [17-21] the following DRs are used to estim-
ate the physical TPE contributions:

 Im[F,% (,7")]
Re[ﬁD;“(r,vn:z—VP[ | Ldv],
, =i

. ¥ -2

S | (@), —+
vIm[F7 (v )]d_] (10)

Re[F3%!(,v)] =;P[f =

! v -2

where the index DR1 refers to the method used in Refs.
[17, 21], the operator P refers to the principle value integ-
ration, and vy, =¢. In Ref. [22] the DRs are modified as
follows:

Re[F15°(t )] =Re[F 3 (1)1,

Re[FPR2(1,v)] =Re[FLR2(1, vp)]
+ —Z(VZ _ Vé) P[ f‘x’ wd‘—,
d w = -%)

(1m)

where the index DR2 refers to the method used in Ref.
[22], v is any real number, Re[FPR%(1,v0)] isan un-
known function, which can be determined by the experi-
mental data sets at fixed v, and the final result is not de-
pendent on vy. To obtain these DRs, the relations in Eq.
(9) have been used.

These DRs are widely accepted to replace the HM
method to estimate TPE contributions and analyze the ex-
perimental data sets. While naively, one can easily verify
that these DRs do not include the contributions from
Fig. 2(c, d), since their imaginary parts are exactly zero
when ¢ < 0. To understand and solve this problem, in this
study, at first we take the following four low energy inter-
actions as examples to show the analytical properties of
TPE amplitudes in these interactions:
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Lp=- eEPV#WpA/u

ek —
Ly=- M'J’po'wklprm,

o _
Ls == M_Z(aqu)(ava)(aElF#pF; B FFy),
N

Lr Eingp[(aﬂZp)’vap - Ep)’v(aywp)]‘#w
+i8Tee (Ol Y yyie = Wy (Buh )P, (12)

where ¢,,A,,¥. and ¢,, refer to the fields of proton,
photon, electron, and tensor meson, respectively,
Fuy = 8,A,—8,A, and F,y = €,p0 F*7 /2. Similarly to the
reason of Fig. 2(d), one can take the direct coupling
between the meson and the electrons to discuss the beha-
vior of the TPE amplitude, since the loop integration does
not change the analytical property in the region with
t < 0. Furthermore, here we only take 2** meson as ex-
ample to show the analytical property, since the contribu-
tions from the mesons with other quantum numbers are
similar when ¢ is fixed to be negative.

By these interactions, the corresponding amplitudes
Mgf} M(SC), M(jfl), and 7—'}2.’)(1, v) are easily obtained,
where X refers to E, M, S, T, and y refers to a, b, ¢, d, re-
spectively, and

3
MY =Y FReM. (13)
i=1

III. ANALYTIC RESULTS AND DISCUSSION

In the practical calculation, at first we use Eq. (4) to
obtain the expressions of the coefficients T)(}lf)(t, v) in d di-
mensions, and then perform the loop integration with the
dimensional regularization. The packages FeynCalc [40,
41] and PackageX [42, 43] are used for the analytical cal-
culation. After the loop integration, we expand Tg)(r, V)
at v = +v; to analyze the kinematic singularities and at v =
+oo to obtain their asymptotic behaviors. The imaginary
parts and the discontinuities of 7—")27) (t,v) in the complex
plane of v and ¢ are used to analyze the branch cuts.

The final analytical results show that the kinematical
singularities are cancelled in Lg g7 cases, but remain in
the £, case. The analytical asymptotic behaviors of the
coefficients are expressed as follows:

oo 42 [(1 W
Re[?'g{)(t,v)] il [[: +ln@)1m/+€1},

Myt |\ er -t
Im[F @ (t,v*)] = drag (1 + ln%
ELYD Myt EIR -t )
F o p3(t) = 0, (14)

and

2,2
Re[771 (1)) = = e[ n*y =201 +1n(-20) Inv
4Ms,
31
+cr+ _T]a
4 €V
2,2
y—oo ALK
Re[?‘fjffz)(l‘,v)] — ——c3,
aM;,
—00 Q’2K2 ﬁz 3
Re[F (1] =5 — = (5+3m Y + ),
[ M3( )] 8M13V( —t EUV)
na2i®

—00 v
Im[F (e, = — [ln_—t—(1+1n2)],
N
(@) 1 V2%
Im[TMZ’M:;(taV )] i O’

(15)

and

_ ae(@g1 +BE1)

—2
1
Re[F(t,v)] = (17+ 1210 2% 12— )y,

72M12V t Euv
Re[FV(1,v)] =S eBTop_,,
My(M2—1)
8Tee8Tpp

Re[F 2 (t,v)] =——— ¢,

[ (R%) N —1)

(c.d) _
Tscl,ss,Tz(t’ v) =0,
Im7 521, v) =0,

(16)

where R yy are the IR and UV scales, ¢; are some
simple functions independent of v, and we do not list
them here. Furthermore,

1 1
— = —vE +1ndn.
€R,UV  €RUV

The asymptotical behaviors of T;’i’)(r, v) are obtained eas-
ily via Eq. (9).

On the branch cuts, the analytical results show: (1)
when 1 <0, T)((?)(t, v) has one right hand branch cut in the
region v C [vy, 0], T;?)(t, v) has one left hand branch cut
in the region v C [—o0,—vy,] , and T)Ei’d)(t, v) has no branch
cut. There properties are shown in Fig. 4, and are natural
due to the unitarity usually argued in the references. (2)
when 1> 0, T;?’b’c’d)(t, v) has an additional branch cut at a
real axis of ¢, and this discontinuity on ¢ results in the
nonzero imaginary parts of T}E?’b""d)(t, v). This is likewise
natural, since when ¢ > 0 the coefficients ?')?;)(t, v) are re-
lated with the TPE contributions in e*e™ — pp.

The summary of analytical properties is presented in
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Im[v]

Im[v]

(a)

()

Fig. 4. Branch cuts of 9"'1.<“’b)(Q2,v) in complex plane of v at fixed negative ¢. () is for Ti(”)(t, v) and (b) is for 7'i<b)(t, v) where the phys-

ical vpp, and possible kinematic singularities are marked.

Table 1. By combing these analytical properties and Eq.
(9), it is easy to verify that 7—';‘;”’) (t,v) satisfy Eq. (10) and
F (t,v) = F ) (1,v) satisfy Eq. (11) when £ < 0, where
i Zf;;rkbs)(t, v) include two kinematic singularities and are ex-
pressed as

b
AP (1)

(a+b) _
TMi,kS (ts V) - (V2 _ V%)z )

(17)

with AE‘”b)(v, t) being three polynomials of v and ¢, their
manifest expressions are slightly long and are listed in the
appendix. Furthermore, Tlfg b)(t, v) includes an UV diver-
gence, which means that the single interaction £, is not
consistent, and the corresponding contact interactions
must be considered to absorb UV divergence. This means
that the usual HM method must be modified to include
the contact interactions. Therefore, DR2 is used in Ref.
[22] to replace DR1.

We find that if the two photons are assigned some vir-
tual masses (different or same) in the Feynman gauge, the
terms ij,?:k}?(t, v) are not changed. This means that the
contributions with the kinematical singularities are ex-
actly cancelled when one replaces the vertex I, (k) (from
Ly) by I (k)F(k*) with F(k?) being a monopole like FF,
as follows:

d:
F(k)zzm, (18)
J J

where k is the momentum of the incoming photon, n; are
some natural numbers, and d;,A; are some real paramet-
ers. This cancellation is due to the following simple rela-
tion and its generalization.

B 1 [ B B ]
K-k -23) Z-Zk-2 kK¥-z]
Because ¥, }f;:ki)(t, v) are not dependent on the parameters
zj, the two contributions with the kinematical singularit-
ies are canceled. This property indicates that the coeffi-
cients (Fi(“b)(t, v) in the usual HM method with a mono-
pole like FFs as inputs are free from any kinematical sin-
gularities. This explains the numerical property of Fig. 19
in Ref. [22], where the difference between the DR and
HM methods with FFs are presented. The important point
is that this does not mean that the kinematical singularit-
ies are canceled certainly in any cases.

Another important property is that Im[fg(?(t, v)] and
Im[TT(‘f)(t, v)] are exactly zero, whereas Re[?—'s(cz)(t, v)] and
Re[?'T(‘f?TS(t, v)] are not zero and satisfy twice-subtracted
and once-subtracted DRs, respectively. Similarly, there is
an UV divergence in Re[?—‘s(;)], which means that the con-
tact interactions must be included to absorb UV diver-
gence. These properties are general when extending the
interactions to general forms by including more derivat-
ives. Similarly, when the mesons with other J are con-
sidered, the results are still polynomial functions on v.
After combing these contributions, one can see that the
contributions from the seagull interaction, the meson-ex-
change, and contact interaction can be expressed as

5':1(5r (t,v) = Z c1ja OV

J=0

Fir O v) = es i, (19)
j=0

where the properties Eq. (9) have been used. At first
glance, these results are unphysical at high energy and are
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Table 1.

Analytical properties of coefficients T;g)(t, v) at fixed negative ¢, where x; are constants whose expressions are obtained from

Eqgs. (14)-(16), and the symbol - indicates that there is no such contributions. Analytical properties of 7’,((?) (#,v) are not listed, as they can

be obtained easily via Eq. (9).

asymptotical behavior of

asymptotical behavior of

kinematical

Re partat v » o Im partat v > o singularities branch cut v R
7__;4;) xiInv —7X) - [Vin, 0] - Yes
F 0 0 - [Vin,e0] - -
7_-;4;) 0 0 - [vin, 0] - -
Fr) xIn?y —2mxz Inv Yes [vn, o] Yes B
F@ x3 0 Yes [Vin, 0] - -
7 . 0 Yes baes) Ve -
& : : ) ) -
7,5@2) x5V 0 - - Yes -
e : : ) ) -
7.}(‘;’) XeV 0 - - - -
. 0 0 ] ) -
e » 0 - - S

directly neglected in the usual calculation. However, their
physical meaning is seen clearly when one continues the
results to the physical region of e*e™ — pp, where the
variable v corresponds to —v,cosd, with 6, as the angle
of the final proton's three momentum in the center of
mass frame. The physical regions of v,z in ep — ep and
e*e” — pp indicate that the contributions Eq. (19) con-
verge in the regions v — oo and |v| < v;. They are given as
follows:

ZC (] _Z 812/ gy
12 - (V2 —v2)i - 22
j=1 s s

=0

PRIOEEDY (f”—()) ~ g30(0), (20)

Jj=0 Jj=0

where g;;(f) are unknown functions and only the leading
contributions are kept, as v>—»? increases quickly when
v increases at fixed ¢. The interesting property is that
these contributions are the same with Eq. (17) in the lead-
ing order.

Finally, one obtains the following DRs in the leading
order of My,/(v* = v3):
f] 10204 ) di_/},

zyp[f = ImlF5( 7
Vs T v, )_/2 - Vz

th

Re[F 50 (1, v)] =

Re[FLR3(1,v)] =Re[FPR3(1,v))]

2(v _V(Z)) [ f VIm[FO (1, 71)] dv}
v F =P —vz) '

21)

where we use fi(¢) to refer to the unknown functions. Egs.
(19)-(21) indicate the following exact relations between
DR3 and the modified HM method:

b}

FOEY) =[¢ff‘;”)<r, W+ ooy

j=0 ]Ana+LO

FA 1)+ Y oy

} @
j=0 Ana+LO

TDRS t,v) = [

where the subindex Ana+LO refers to do analytical con-
tinuation and maintains the leading order contribution,
hi;(¢) includes the contributions from the seagull interac-
tion, the meson-exchange effect, and the contact interac-
tions.

Indeed, the contributions due to the off-shell effects in
(a+b) can also be expressed by A;;(¢). This is understood
in a direct physical manner. In the DR method, only the
on-shell vertex of y*NN is used to estimate the imagin-
ary parts of the coefficients, and the real parts are ob-
tained by the DRs. In the HM method, if the off-shell ver-
tex is used, one can separate the vertex into two parts as

rzﬁ—shell( lzf,kZ) an—shell(kZ) +Ar'u(pl2’f _ M[Z\,’kZ)’ (23)
where p;, py are the momenta of the initial and final pro-
ton in the vertex, respectively, A[(p} , - M},k%) is a poly-
nomial function on p} -~ My, or p;—Mj whenno addi-
tional phenomenological poles on p? and p; are intro-

duced in the vertex. Then, the TPE amplitude can be sep-
arated into two parts: one only includes the on-shell in-
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formation, and another includes the off-shell effect. Na-
ively, the first one is obtained by the DR1 method. The
second one has a global factor like p? — M3, or p; -M% in
the numerator. This factor cancels the denominator of the
nucleon's propagator, and the final result after the loop in-
tegration is similar to the contribution from the seagull in-
teraction. This means that the contributions due to the
off-shell effect can be expressed by some polynomials on
v like the contributions from the seagull interaction, the
meson-exchange effect, and contact interactions. This
property clearly indicates the physical meaning of 4;;(?).
They include all the contributions due to the seagull inter-
action, the meson-exchange effect, the contact interac-
tions, and the off-shell effect.

IV. SUMMARY

In summary, detailed analysis based on four typical
and general interactions clearly shows that the usual DR
and HM methods must be modified to general forms.
After the modifications, the two methods yield exactly
the same results, which automatically include contribu-
tions from the seagull interaction, the meson-exchange
effect, contact interactions, and the off-shell effect in a
correct manner. The physical reason why they are ex-
actly the same is likewise discussed. The expressions in
the modified DR and HM methods in the leading order
are expressed by Eq. (21) and Eq. (22). One must use
them to analyze the corresponding experimental data sets
and extract physical quantities. The novel DRs have two
additional parameters, which makes it more difficult to
extract the full TPE contributions from the experimental
data sets. In this study, our aim is to show the exact rela-
tions between the HM method and DR method; therefore
we do not perform fitting with the experimental data sets.
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APPENDIX A

In this appendix, the expressions for AZ(.“‘b '(v,1) are
presented.

The expressions for A" are slightly complex, and
for simplicity, we separate them into two parts : the first
part AI(“ Y arises from the finite parts of the pure loop in-
tegratlons and the finite trace of Dirac matrix, the second
part AH(“ ) arises from the divergent parts of the pure
loop 1ntegrations and the trace of Dirac matrix with factor
(d—4). Finally, we have the following expressions:

(a,b)

(M3, - 1)(2v-31)
2 2 8M3 (Vz_vz)

I(a) _
Ala
2v -3t
I 2.2 )
AN =2 Ty v =vy),
22 2(SM2 21+ 3v)t

Al(a)
3 8M3

0 =), (A1)

and

2 _

4M? —t
A) = - a2 [2t(4M,2v —1)(Tt+10v)
N

1 - e
—(Ur+4)07 =2),

I(a)
A,

_QK

1
e |[264M3, - )71 + 10v)

— (144907 =),

AII(a)

3 T

e

t
2K2713V[ — t(4M3, — 1)(40M% — 10t - Tv)

+(28M3, =Tt =2v)(07 =), (A2)

The corresponding expressions for A( ) can be obtained
by the relations between T(“)(t v) and F, (b)(t v). These ex-
pressions are also checked by the numerical calculation.
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