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Abstract: Super-entropic black holes possess finite-area but noncompact event horizons and violate the reverse iso-

perimetric inequality. It has been conjectured that such black holes always have negative specific heat at constant
volume Cy or negative specific heat at constant pressure Cp whenever Cy > 0, making them unstable in extended
thermodynamics. In this paper, we describe a test of this instability conjecture with a family of nonlinear electro-
dynamic black holes, namely 3D Einstein-Born-Infeld (EBI) AdS black holes. Our results show that when nonlinear
electrodynamics effects are weak, the instability conjecture is valid. However, the conjecture can be violated in some

parameter region when nonlinear electrodynamics effects are strong enough. This observation thus provides a counter

example to the instability conjecture, which suggests that super-entropic black holes may be thermodynamically

stable.
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I. INTRODUCTION

Black hole thermodynamics have been developed
based on an understanding of black holes and quantum
physics [1-5]. In extended phase space, the cosmological
constant can be considered as a thermodynamic variable
[6-8]. Specifically, one can treat the cosmological con-
stant A as thermodynamic pressure P =—A/87G, which
means that its conjugate quantity can be interpreted as
thermodynamic volume. For a negative cosmological
constant A, the pressure P is positive, which yields a
well-defined equilibrium thermodynamic framework. It is
worth noting that this volume is usually not equal to the
geometric volume of black holes, except in some simple
cases, such as AdS Schwarzschild black holes.

Although the definition of thermodynamic volume
has been given, its physical interpretation is still a puzzle.
An early attempt to answer this question led to the con-
jecture that the volume satisfies the reverse isoperimetric
inequality [9,10]. This conjecture was motivated by pro-
gress in studying Kerr-AdS black holes and then general-
ized to other black holes. The reverse isoperimetric in-
equality is saturated for Schwarzschild-AdS black holes,
which indicates that for a black hole of a given thermody-

namic volume V, the entropy is maximized for Schwarz-
schild-AdS black holes [9]. However, further investiga-
tions discovered that this inequality does not apply to all
types of black holes. Those black holes that exceed the
maximum entropy bound are called super-entropic black
holes [11-15], and they rotate with non-compact event
horizons of finite surface area [11]. More relevant discus-
sions can be found in Refs. [16-29].

A black hole reduces its mass-energy via Hawking ra-
diation. If the specific heat is negative, this shrinking
leads to a higher temperature, increased radiation, and
hence, more mass loss. Therefore, the system accelerates
through this downward spiral instead of settling into an
equilibrium state. For charged BTZ black holes, which
are the simplest super-entropic black holes, it has been
shown that there is a connection between the violation of
the reverse isoperimetric inequality and the thermody-
namical instability with the specific heat at constant
volume Cy < 0 [23]. This result consequently leads to the
natural conjecture that super-entropic black holes always
have Cy <0, making them unstable in extended thermo-
dynamics. Later, it was found that this conjecture is viol-
ated for generalized exotic BTZ black holes in some para-
meter region [24]. However in this case, the specific heat
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at constant pressure Cp was determined to be negative
whenever Cy > 0. Thus, a broader version of the instabil-
ity conjecture was proposed [24], which states that all su-
per-entropic black holes are in general thermodynamic-
ally unstable with either negative Cy or negative Cp. The
instability conjecture was analytically verified for 3D
charged BTZ black holes [23,30,31]. As it is difficult to
obtain analytical expressions for Cy and Cp, using meth-
ods described in Ref. [32], the instability conjecture was
tested numerically for ultra spinning d-dimensional Kerr
black holes [14], generalized exotic BTZ black holes
[24], and super-entropic black holes with Immirzi, as de-
scribed in Ref. [27].

Here, we test the instability conjecture for EBI AdS
black holes in (2+1)-dimensional space-time. An EBI
AdS black hole is the charged black hole solution in EBI
theory based on non-linear electrodynamics as proposed
by Born and Infeld in 1934 [33] and is an extension of the
RN black hole in the Einstein-Maxwell theory. As it was
found that non-linear electrodynamics, in particular Born-
Infeld electrodynamics, can arise from the low-energy
limit of string theory and encode the low-energy dynam-
ics of D-branes (i.e., the low-energy effective action for a
constant electromagnetic field is precisely the Born-In-
feld action) [34-37], they have attracted considerable at-
tention in recent years. After BI black hole solutions in
anti-de Sitter space were obtained [38,39], their proper-
ties have been extensively investigated [40-57]. Al-
though various aspects of 3D EBI AdS black holes have
also been studied, the specific heat and instability conjec-
ture need to be explored in more depth.

The organization of the rest of this work is as follows.
In section 11, we discuss the thermodynamic quantities of
3D EBI AdS black holes. In section 111, we first show that
3D EBI AdS black holes violate the reverse isoperimetric
inequality, and hence, are super-entropic. Then, the in-
stability conjecture is considered by calculating Cy and
Cp. We find that when non-linear electrodynamics ef-
fects are strong enough, there exists some parameter re-
gion in which Cy and Cp are both positive. This observa-
tion provides a counter example to the instability conjec-
ture. The conclusion is given in section IV. In this paper,
we use geometrical units, whereby G, ¢, i, and kg have
been set to unity.

II. THERMODYNAMICS OF 3D EBI
AdS BLACK HOLES

In this section, thermodynamics of 3D EBI AdS black
holes are discussed. The actions of 3D-Einstein gravity
being coupled with Born-Infeld electrodynamics are

R-2A
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Here, constant b is the Born-Infeld parameter, g is the de-
terminant of the metric tensor, A = —1/% is the cosmolo-
gical constant, / is the AdS radius, and L(F) is the Lag-
rangian of Born-Infeld electrodynamics. The metric and
gauge potential are [40,41]
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where Q and M stand for the charge and mass of EBI
black holes, respectively. In the limit of b — oo, this is re-
duced to the charged BTZ black hole solution [23],
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The horizon is located at r = r, with f(r,) = 0, from which
the mass of 3D EBI AdS black holes is obtained [40], as
follows:
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In extended thermodynamics, one identifies enthalpy H
[6] with the mass of the black hole, and the pressure is
P = —-A/87 = 1/8xl>. Moreover, entropy S is

A 1
S = Z = §7TF+. (6)
The first law of thermodynamics, dM =TdS +VdP+
®dQ, gives the temperature and the thermodynamic
volume of 3D EBI AdS black holes
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respectively. It is observed that the thermodynamic
volume is different from the geometric volume 7r2.

III. INSTABILITY CONJECTURE OF 3D EBI AdS
BLACK HOLES
For an asymptotically AdS black hole in extended

phase space, it was conjectured in Ref. [9] that a reverse
isoperimetric inequality holds,

1

1
_[(d=-1)V\d-1 (wy_r\a=2
k= ( Wd-2 ) ( A ) g 1, (9)

where the isoperimetric ratio R is defined. Here, V' is the
thermodynamic volume, A4 is the horizon area, w, stands
for a d-dimensional unit sphere,

d+l
2w 2
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where w; = 2 and w; = 4n. The reverse isoperimetric in-
equality is saturated for a Schwarzschild AdS black hole,
as its thermodynamic volume is simply equal to its naive
geometric volume. For some more complicated black
holes, e.g., Kerr [9], STU [58] and Taub-NUT/Bolt black
holes [59], thermodynamic volumes are larger than naive
geometric volumes, hence resulting in R > 1. Moreover,
unlike a Schwarzschild AdS black hole, these black holes
have nonzero Cy. However, several black hole solutions
were later found to violate the reverse isoperimetric in-
equality [11-14,60,61]. A black hole that violates the in-
equality is dubbed "super-entropic black hole" as its en-
tropy is larger than the maximum entropy allowed by the
reverse isoperimetric inequality. As argued in Ref. [11],
this violation can be attributed to be a result of the finite-
area but noncompact event horizon. It was further presen-
ted in Refs. [23,24] that a large family of super-entropic
black holes has Cy <0 or Cp < 0 whenever Cy > 0, show-
ing that they are unstable in extended thermodynamics.

In this section, we first show that 3D EBI AdS black
holes are super-entropic, which means that they violate
the reverse isoperimetric inequality (9). In fact, accord-
ing to Egs. (6), (7), and (9), the isoperimetric ratio R for
3D EBI AdS black holes can be readily computed to be

-1
2O2 2
T R O BT

Wy =

(10)

It is obvious from Eq. (11) that R < 1, which means
that 3D EBI AdS black holes violate the reverse isoperi-
metric inequality as long as Q # 0. Note that for 0 =0,
EBI AdS black holes are reduced to Schwarzschild AdS
black holes, which have R=1. Consequently, 3D EBI
AdS black holes are super-entropic. In the remainder of
this section, we discuss the behavior of Cy and Cp of 3D
EBI AdS black holes and provide further investigation
results of the instability conjecture.

Using Eq. (6), we can write thermodynamic quantit-
ies in terms of S and P,

8PS 2Sb? n2Q?
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From Eq. (6), we observe that the entropy S is geometric-
al and only depends on the horizon radius r,. Hence the
entropy S and the thermodynamic volume V are inde-
pendent functions, which consequently gives a nonzero
Cy. To obtain the specific heat at constant volume Cy, it
is easier to start with Cp. Using Eq. (12), we can express
S'in terms of T'and P,

T 27P\ "' (2nP 4P2Q2 2PQ?
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which is manifestly positive. For large 7, one has
T

Cp(T) = Z—P +++-. When b — oo, Eq. (15) reduces to CE™2

of charged BTZ black holes (see Eq. (7) in Ref. [23]),

T 1

B2y = | (16)
16P 2PQ2
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One can calculate Cy(T) from Cp(T) via the well-
known relation,
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where «r = -VOP/ dV|y is the isothermal bulk modulus,
and Bs =-V~10V/ dP|g is the adiabatic compressibility.
To be self-contained, a derivation of Eq. (17) is given in
the appendix. Substituting Eq. (14) in Eq. (13) yields
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From Egs. (13) and (18), «r and Bs can be readily com-
puted,
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With the above results for «7, 8s, and Cp(T), one can use
Eq. (17) to obtain the specific heat at constant volume
Cy. As a check, in the limit of b — oo, we find that Cy(T)
becomes CBT#(T) of charged BTZ black holes (see Eq.
(10) in Ref. [23]), where

/ 2PQ?
1+4/14+—
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In Fig. 1, we plot the specific heat at constant volume
Cy, the specific heat at constant pressure Cp, the black
hole mass M and the black hole temperature T as func-
tions of the black hole horizon radius r, for 3D EBI AdS
black holes with fixed pressure /=1.0, fixed charge
Q=1.0 and various b=0.1,0.5,1.69,100. For b =100,
non-linear electrodynamics effects are negligible, and
hence, the behavior of 3D EBI AdS black holes closely
resembles that of charged BTZ black holes. As shown in
Fig. 1(a), Cp is always positive, whereas Cy is always
negative, which recovers the results of BTZ black holes
[23]. As b decreases to b~ 1.69, Fig. 1(b) shows that Cy
stays negative and becomes highly negative as T goes to
zero. Interestingly, for small enough values of b (i.e.,
b < 1.69), our numerical results show that Cy and Cp can
both be positive in some parameter region. In fact, when
b=0.5 and 0.1, the regions in which Cy >0 and Cp >0
are represented by yellow in Figs. 1(c) and 1(d). Note that
the black hole temperature 7 and mass M are both posit-
ive in the yellow regions of Figs. 1(c) and 1(d), which
means that the 3D EBI AdS black hole solutions with
Cy >0 and Cp >0 are physical. Moreover, Figs. 1(c) &
1(d) suggest that the conjecture violation region in-
creases in size with decreasing parameter b. In short, we
find that 3D EBI AdS black holes can violate the instabil-
ity conjecture.

Interestingly, Fig. 1 shows that Cy has a discontinu-
ity for a small enough b. To investigate the nature of the
discontinuity in Cy, we plotted the horizon radius r, and
the Helmholtz free energy F as functions of the black
hole temperature 7 with fixed volume ¥ in Fig. 2, where
Q=1 and b =0.1. The left panel in Fig. 2 shows that, for
a given T, there are two black hole solutions of different
sizes, namely Large BH (red line) and Small BH (blue
line). Moreover, the black hole temperature 7" has a max-
imum Ty, Which corresponds to dr./dT|, =0. Note
that Cy can be rewritten as

D>

ry

Cy= ,
v Tl

2 (23)

o5

where we use Eq. (6) for the entropy S. Therefore,
Large/Small BH has a negative/positive Cy, which goes
to negative/positive infinity as 7 approaches Tmax. In
short, the discontinuity in Cy corresponds to the maxim-
um value of the black hole temperature, at which the two
black hole phases (i.e., Large BH and Small BH) merge.
The right panel of Fig. 2 displays that the free energy of
Small BH is always smaller than that of Large BH, which
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(color online) Plots of heat capacity at constant volume Cy, heat capacity at constant pressure Cp, the black hole mass M, and

the black hole temperature 7T against the black hole horizon radius r, for 3D EBI AdS black holes with 0 =1 =1 and various values of

b. Yellow regions denote the regions of interest, where Cy and Cp are both positive, and hence, black holes can be free of thermody-

namic instability.
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(color online) Plots of the horizon radius r, and the Helmholtz free energy F against the black hole temperature 7 for 3D EBI

AdS black holes with fixed volume V. Here, we take 0 =1 and 4 =0.1. The blue and red lines represent Small BH and Large BH, re-
spectively. The specific heat at constant volume Cy of Small/Large BH is positive/negative. As a result, Cy is discontinuous at the

maximum value of 7.

indicates that there is no phase transition. Our results sug-
gest that, at a constant volume, 3D EBI AdS black holes
with positive Cy are globally stable.

IV. CONCLUSION AND DISCUSSION

In this paper, we tested the instability conjecture by
considering 3D EBI AdS black holes: super-entropic
black holes always have Cy <0 or Cp<0 whenever
Cy > 0, making them unstable in extended gravitational
thermodynamics. This conjecture was tested and found
satisfied for a large class of super-entropic solutions
[11,23,24]. After showing that 3D EBI AdS black holes
are super-entropic, we found that black holes satisfy the
instability conjecture when b is large enough (i.e., non-
linear electrodynamics effects are inessential). However,
when non-linear electrodynamic effects play an import-
ant role, our numerical results (see Fig. 1) show that there
exists some parameter region in which both Cy >0 and
Cp > 0, and hence, this provides a counter example to the
instability conjecture. In addition, it was suggested that
the violation region will increase as non-linear electro-
dynamic effects become stronger.

It is worthwhile pointing out that for d > 4 dimension,
the thermodynamic volume of EBI AdS black holes is
just the naive geometric volume V =(d—1)"'wy 4",
which means that R =1, and hence, higher dimensional
EBI AdS black holes are not super-entropic. In contrast,
for higher dimensional EBI AdS black holes, entropy S
and volume V are not independent, which leads to a con-
stant volume specific heat Cy =0 [62].
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APPENDIX A: Derivation of Eq. (17)

In this appendix, we present a derivation of Eq. (17),

which starts from the definition of the adiabatic com-
pressibility and the isothermal bulk modulus. In fact, the
adiabatic compressibility Bs and the isothermal bulk
modulus «7 are defined by

(AT)

respectively. Using the properties of partial derivatives,
one can rewrite Bs as

4
_1ov] as| _ 1 Ply
Ps ==y &sl, apl, = v as
avlp
oS| aT
1 aTly oPly
=TVas| or| (A2)
aT |p OV Ip

In contrast, the specific heat at constant pressure Cp and
the specific heat at constant volume Cy are defined by

CPETZ—;P and CvETg—i‘v, (A3)
respectively. Consequently, Eq. (25) reduces to
pC (L) )G L)
Cp\ VoPlyoTlp)  Cp\ V oPly
Cy 1
i (a9
which leads to
C 1
o B (83
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