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Analytical investigation of yN—>N*,A* transition helicity amplitudes
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Abstract: We study the structure of nonstrange baryons by analytically calculating the electromagnetic transition

helicity amplitudes of the nucleon and A resonances. We employ an improved hypercentral constituent quark model

and obtain the corresponding eigenenergies and eigenfunctions in closed forms. Then, we calculate the transverse and

longitudinal helicity amplitudes for nucleon and A resonances. The comparison of evaluated observables and experi-

mental data indicates good agreement between the proposed model and available data.
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1 Introduction

The internal structure of baryon resonances has long
been investigated by the excitation of resonances via the
electromagnetic interaction. The electromagnetic trans-
ition form factors are the key source of information and
yield essential information on the nature of strong inter-
actions and quark confinement [1-3]. Furthermore, addi-
tional understandings of the substructure and underlying
symmetry of nonstrange baryon resonances has been
provided by means of the electromagnetic transition form
factors [4]. Recent experiments in electro- and photo-pro-
duction in the resonance region probe the spatial struc-
ture of baryons resonances by measuring the electromag-
netic transition form factors [5-12]. Thus far, different
quark models have been proposed and developed to in-
vestigate the electromagnetic transition between the nuc-
leon and its resonances in theory, including the hyper-
central constituent quark model [13], chiral effective field
theory [14], light-front quark models [15-17], covariant
spectator quark model [18], and soft-wall AdS/QCD
model [19]. All of the mentioned quark models are per-
spective theoretical frameworks that efficiently describe
the mass spectra of baryons and elastic form factors of
the nucleon; however they predict a remarkably different
Q2 dependence of the yN — N*,A* electrocouplings for
nucleon and A resonances. In this study, our aim is to
construct an appropriate quark model that not only pre-
dicts the excitation spectrum of nonstrange baryon, but
also describes well the photoexcitation of the nucleon to a
baryon resonance. The successful description of the mass
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spectra of light baryons motivated us to extend the model
presented in Refs. [20, 21] to calculate the electroexcita-
tion amplitudes for the nucleon and A resonances. Thus,
in the present study we investigate the electromagnetic
transition helicity amplitudes for the first radial and orbit-
al excitations of the nucleon and A. The remainder of the
paper is organized as follows. We first present the model
constructed to solve the Schrodinger equation analytic-
ally for the eigenenergies and hyperradial component of
the wave function, in Section 2. As the first task of the
model, the spectrum of light baryons is described in Sec-
tion 3. Subsequently, using the spin- and isospin-depend-
ent wave functions, we calculated the longitudinal and
transverse transition amplitudes for low-lying resonances
of nucleon and A in Section 4. Section 5 is dedicated to
discussing the results, and finally a conclusion is given in
Section 6.

2 Model

In constituent quark models, the three-quark interac-
tion potential contains a dominant confining SU(6)-in-
variant term, which accounts for the spacing between
SU(6) multiplets and an small short-range spin depend-
ent SU(6)-violating term, which generates the splittings
within SU(6)-multiplets [22-27]. Without loss of general-
ity, the antisymmetry of the total wave functions
Wipace @S U, 1r(6)Ocolor With respect to the quark inter-
change, is given by the color factor O, and the product
Wipace @S U, p(6) 18 Symmetric. Furthermore, we can de-
compose the three quark states into the following SU(6)
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representations
60686 =20, ®700a D 700Ms B 56s. )

Considering the spin and flavor content of each SU(6)-
representation, the three SU(6) representations can be de-
composed into a SU(3) representation, as:

20=41+%8, 56=28+%10, 70=>1+28+48+2%10, (2)

where the suffixes denote the multiplicity 25 +1 of the
three-quark spin states. In the appendix, we provide the
explicit form of the SU(6) configurations describing vari-
ous baryon states. As supported by the lattice QCD calcu-
lations [28, 29], we consider the interaction potential of
three quarks inside the baryon as:

V3q =Vs U(6)—invariant T Vs U(6)—breaking» (3)
where the SU(6)-invariant part of the interaction was
composed of a linear confining term (dominant at large
separations) and a one-gluon-exchange (OGE) term
(dominant at short separations) given by a central Cou-
lomb-like potential, whereas the SU(6)-breaking part is
given by an spin- and isospin-dependent part, responsible
for the hyperfine splitting of baryon masses:

B e—ar,,
V3q ZZAVU - —+
Tij o Tij

—i r
i<j
+FE (0’,‘.0']‘) (T,’.Tj)] . (4)

Here, the J-function represents spin and isospin ex-
change interactions [28] smeared by a Yukawa-type
factor. Accordingly, the dynamics of the three-quark sys-
tem is described as follows. After having removed the
center of mass coordinate, the internal quark motion is
described by the Jacobi coordinates p and 4, as:

[C (0',-.07) + D(T,-.Tj)

p= %("1 —-r), = %(ﬁ +r2-2r3), (%)
where p is the relative position of the pair in the two-
body subsystem, and 4 is the position of the third particle
relative to the center of mass of the pair, where we sup-
posed three constituents identical, m, = m,. The hyperra-
dius x and the hyperangle £ are defined as [25-27]:

X=AJp2+ A2, E= arctan(g). 6)

Using Jacobi coordinates, the Hamiltonian for three-inter-
acting particles can be rewritten as:

1 50 PP(Qé)

H3q=_ﬁ[@+x6x x2 Vi oD, (7)

where m (= m, = my) is the common quark mass, and V3,
is the total interaction potential between the three quarks
confined in a baryon. The term L? (Qp,Ql,f) is the gener-
alized six-dimensional squared angular momentum oper-
ator, where its eigenfunctions are the well-known hyper-
spherical harmonics [27] that can be expressed as

products of harmonic oscillators and Jacobi polynomials
as:

_ 2Q2y+2)T(y+2-m)T(n+1) :
Y (O O¢) C(n+l,+3)0(n+1+3)

X Yl,,mp (Qp) YlAm,l (Qxl)

X (sing) (cosé) P22 (cos2¢)  (8)

with eigenvalues y (y +4). Here, y(=2n+1, + 1), where n is
a non-negative integer, and /, and /; are the angular mo-
menta corresponding to the Jacobi coordinates p and 1)
being the degree of the polynomial, is referred to as the
grand orbital quantum number. In the hypercentral hypo-
thesis, it is assumed that the confining potential is hyper-
central and hence depends only on the hyperradius x.
Therefore, we can factorize the spatial wave function in-
to hyperradial and hyperangular parts as:

Vg (0, ) = Yy () Y[, 111, (R0 Q1,). ©)

Evidently, one can go beyond the hypercentral hypothes-
is by considering a non-hypercentral interaction, by
means of a confining potential depending on the hyper-
angle ¢ and/or Jacobi angles Q, and €, as well. A major
feature of applying such an angle-dependent potential is
to study the rotational-vibrational dynamics of a bound
system. Thus, the addition of a non-hypercentral poten-
tial enables investigation of the contributions of paramet-
ers that arise from the angle-dependent potential into the
observables of interest, such as the mass spectrum, elec-
tromagnetic form actors, helicity amplitudes, etc.
However, in the hypercentral hypothesis, the angular-hy-
perangular part of the spatial wave function is determ-
ined by hyperspherical harmonics (8), and the hyperradi-
al wave function is obtained via the solution of the hyper-
radial equation

# 50 yy+4

a2ty e 7
where v and y are the quantum numbers describing the
hyperradial and orbital excitations, respectively. From
Eq. (4), the hypercentral interaction contains an SU(6)-in-
variant "Columbic-linear" potential and an SU(6)-violat-
ing hyperfine interaction as:

m(E— V3q (x))} l,bvy ()C) = 0» (10)

—ax

€

V(x) = Bx— =+ —— Ay (S.T), (11)
X X
with
Apyp (S, T)=As (SZ—§)+AI(T2 - §)+A51(Sz—§)(T2—§).
(12

The exact solution of the hyperradial Schrodinger equa-
tion (10) with nonlinear potential (11) can be obtained
numerically [30]. However, to obtain closed form expres-
sions for wavefunctions and energy eigenvalues, we must
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perform the calculations analytically. Hence, we used
some approximations to omit the nonlinearity of the po-
tential and deal with the problematic linear confining
term and Yukawa-type smearing factor. To this end, we
change the variable § = 1/x, and suppose a hypothetical
length scale x,, around which a power series expansion
must be presented for the 1/0 term. Setting 1" = 6 — &y, we
found the power series expansion of 1/ about T =0 up to
the second order as:

1
—5+;52+0(53), (13)

where 6y = 1/xp, and the model scale parameter x, can be
interpreted as a characteristic radius of the baryon,
namely an effective length scale representing the dis-
tance within, (after) which the charge density of the bary-
on becomes substantial (as it loses a significant amount of
its strength). It would also be useful to expand the expo-
nential term in a Taylor series for small ax, as:

e = 1—ax+0((ax)2). (14)

This condition is quite instructive when a < 1 fm~!. Sub-
stituting the approximations (13) and (14), the hyperradi-
al wave functions can be determined by the hypercentral
Schrodinger equation:

” 59 _y(y+4)+2md

dx2  xo0x x2
Xy x)=0

+2m(E—V()ST+ TS—T)1|
X

(15)
with
@ :axg, Vost = 3axg — aApy, (S,T),
Fs7 =T +3ax5— Apyp (S, T). (16)
Eq. (15) is recognizable as the generalized six-dimension-
al Schrodinger equation with hyperCoulomb potential.
Consequently, the eigenenergies and eigenfunctions can
be obtained directly as [21]:
) 2
m(T+3ax} = Ay, (S, T))

200+ 7 +5/2)?

Ev,)/,S,T = 3a'x0 b a’Ahyp (S, T) -
A7)

and

e hx L%7+4 (2hx),

(18)
where A, (S,T) is given by Eq. (12), I'(#) indicates the
gamma function, L37+4 (2hx) denotes associated Laguerre
polynomials [31], and

VI(2h)27*o
Qv+2y+5)T(v+2y+5)

YiysT (X) =

y+2 =22 +2mal’, h= —"L (g9
y2=[o+242mal’ h=2men (19)
As one notes, the hyperradial wavefunctions (18) depend
not only on quantum numbers (n,7), but also on total spin

S and isospin 7.
3 Mass spectrum

From Eq. (17), the spin- and isospin-dependent
masses are given by
M, sr=3m+E, gr. (20)

VY,

Considering the constituent quark mass at about 1/3 of
the nucleon mass, the remaining free parameters are fit-
ted to the spectrum, yielding the values listed in Table 1.
The results for light baryon masses are summarized in
Table 2 and compared with experimental values [32].
Notwithstanding the applied approximations, the model

Table 1. Fitted values of potential parameters obtained within analyt-
ical fixing procedure.

Parameter 7 qo/fm™2 xo/fm p/fm™!  As 4; As

Value 5.5 1.2 0.5 0.22 0.16 023 —0.15

Table 2. Mass spectrum of nonstrange baryons compared with exper-
iment results [32].

Baryon Lor2s v Y Mrpeor. My,

NO©3®8) Py 0 0 T 939 939

N(1440) Py 10 T 1524 1410-1450
N(15200 Dy 0 1 © 1511 1510-1520
N(1535) Sy 0 1 C 1511 1525-1545
N(1650) Sy 0 1 © 1651 1645-1670
N(1675) Dis 0 1 © 1651 1670-1680

+

N(1680) Fis 0 2 1763  1680-1690

N(1700) Dy 0 1 1651 1650-1750

+

N(1710) Py, 2 0 1772 1680-1740

N(1720) Pi3 0 2 1763 1700-1750

+

A(1232)  Ps3 0 0 1249 1230-1234

+

A(1600) P33 1 0 1662 1500-1700

A(1620) S5 0 1 1673 1600-1660

A(1700)  Ds3 0 1 1673 1670-1750

A(1900) S5 1 1 1842 1900-1902

+

A(1905)  Fiss 0 2 1831 1855-1910

+

A(1910) 1831 1860-1910

+

A(1920)  Ps3 2 0 1838 1900-1970

+

A(1950) Fy; 0 2 1831 1915-1950

POTURWR = RN =R WRI =N W WRWR =W RN RN =N =] WN == %
+

N | N W WRTWRI =N —R W W WRWRWR — N WRWR —N—N]—N] —|t
O | W W WRTWRWRIWRWRWRNWR =R R =R =R =R === ==
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provides a fair description for the observed resonances,
especially for the lower part of the spectrum.

4 Electromagnetic transition form factors

To determine the substructure of nucleon and A res-
onances, the electromagnetic transitions are investigated
through the deep inelastic electron-nucleon scattering
process, and the associated trans1t10n form factors are
usually expressed in terms of Q -dependent helicity amp-
litudes. The electromagnetic transition form factors
provide quantitative information needed for explaining
the substructure of resonant states. Fig. 1 shows a schem-
atic representation of the one-photon-exchange for elec-
tron-nucleon inelastic scattering.

A virtual photon with momentum ¢ = k’ — k and heli-
city 4,(=0,%1) is absorbed by a ground state nucleon
with helicity /IN( ) leading to a resonant state with

helicity /lx( 3 2) where both the ground state nucleon
and resonant state are considered in the rest frame, and
the helicity is conserved via Ax =4, —Ay [33]. Trans-
verse electrocouplings 4, and 45, are proportional to
the helicity amplitudes that describe the transitions in the
N and A’ rest frame between the initial transverse-photon
and ground state nucleon (target) and the final resonant
state of helicity 1/2 and 3/2, respectively. The longitudin-
al S}, electrocouplings are proportional to resonance
electroexcitation amplitudes by means of longitudinal
photons of zero helicity. Hence, the transverse and longit-
udinal helicity amplitudes are defined as:

3 1
A3/2 :<Xv~]z = ElHem|Nst = §>’

1 1
A1/2 = X’Jz = ElHem|N,Jz = _5 s

1 1
S =<X,JZ=§|H3m|N,JZ= §>, 21)

N%}X

Fig. 1. (color online) Schematic of deep inelastic electron-
nucleon scattering process leading to electromagnetic trans-
ition of the ground state nucleon to nucleon and A reson-
ances.

where X indicates the nucleon and A resonances, and H,,,
denotes the electromagnetic interaction given by a direct
photon-quark coupling and is written in the non-relativist-
ic approximation as [34, 35]:

3.0 e,

Hop = —Z{W’j(pj.Aj+Aj.pj)+pjsj.(vXAj)}, (22)

=1
where ¢, m;, Sj Pj and p=ge;/2m; denote the electric
charge, mass spin, momentum, and the magnetic mo-
ment of the j-th constituent, respectively, and A; = A(r J-)
is the vector potential of the electromagnetic field of a
photon. Considering the monochromatic photon field,
after replacing p/m with ikor, the transverse (longitudinal)
coupling is obtained by inserting the radiation field for
the absorption of a right-handed (longitudinally polar-
ized) photon into Eq. (22) [34]. For three identical con-
stituents, the symmetry of the wave functions allows us to
write H =3H; (H = H,,, defined in Eq. (22)), and thus
the electromagnetic transition operator reads:

~ 1 N
H'=6 l,u% [nkS3,+U+ -(=D"T,|, (23)
\ ko g

here n =+1(0) indicates the transverse (longitudinal) H’
(H") coupling and Ty =T.. In Eq. (23), s34 = 53, +is3,
and e; correspond to spin operator and the charge of third
quark, respectively, and U and 7 are operators acting on
the spatial part of wavefunction given by:

U =e ™ T, = imkond,e ™™, n=0,£1,  (24)

with = v2/3. Because the electromagnetic transition
operator H” in Eq. (23), acts both on the spin-flavor, Eq.
(A3), and the space part of the nucleon wave functions,
Eq. (9), one has to separate these two parts by decoup-
ling the wave function. After doing so, the transverse
helicity amplitudes can be expressed in terms of radial in-
tegrals

= (I i) = apnA+BuB, (25)

Ly~ . A
ﬂ=6\/kzo,u§<f|T+1|l>, B=6\/kzouk(f|Ulz>, (26)

where index m denotes the helicity (1/2,3/2), i and f rep-
resent initial and final states, and A and B represent the
orbit- and spin-flip spatial amplitudes, respectively. The
longitudinal helicity amplitude can be expressed in terms
of single spatial amplitude as:

A= (fIHli) = 6, f = (fIToli). 27)

The coefficients a,,, f,, and y; given in Table 3 contain
the contributions of the spin-flavor matrix elements and
of Clebsh-Gordon coefficients. Using the hyperradial
wave functions given by Eq. (18) and hyperspherical har-
monics (8), we can evaluate the matrix elements of the
operators U and T, of Eq. (24), where the initial state is
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Table 3.
city amplitudes for nucleon resonances; proton-target couplings.

Spin-flavor coefficients of transverse and longitudinal heli-

Columns 1 and 2 denote the state of resonances in the notation of
PDG and are labeled as 25*!dim{$ U (3)}, [dim (S Us r (6)}, L”].

A Asp A4
Resonance State
ayp Bin azp Ban Vi
N (1440) Py, 28,[56,0] 0 % 0 0 %
N(1520) D328, p[10,1] —= L 0 L
BT 36 3v3 3V 3V3
-1 -1 -1
N (1535) 8}, 28,»[70,17] — ——= 0 0 —
1 812 ] 35 3ve IVe
A(1232) Py 1052 [56,07] 0 —V2 o V2 0
9 33
AUI600) Ps*10s[56,07] 0 V2 o V2 0
9 33
1 -1 1
A(1620) S3121012[70,17] — ——= 0 0 —
(1620) S31 2102 [ ] 3vi  ove 3Ve
1 1 1 -1
A(1700) D332103/2[70,17] — ——= — 0 —
(1700) D332103/2 [ ] 3ve 9v3 32 33

the ground state. The angular-hyperangular integrals can
be evaluated in terms of the integral representation of the
ordinary Bessel functions, whose derivatives with re-
spect to z result in

fﬂ désinPecos?ée ™ = \nl (ﬁ+ l)Zﬁi [L(Z)] (-0~
0 2 dZ" Zﬁ
28)

Using the recurrence relations of spherical Bessel func-
tions, we obtain

7 J2(2)
2 22
Finally, integrating over the hyperradius, all transverse
and longitudinal helicity amplitudes, Eqs. (25) and (27),
can be obtained analytically and expressed in terms of the
hypergeometric functions as:

f X375 I, (nkx) dx
0

/2
f d¢ sin?écos’£ jo (zcosé) = (29)
0

FG+60)  546)[((r= 212 A2

S /TR Qy+ Tk 25
G063 @D )

~ ~ 272

X2F) y+6’7+7;2;_nf
2 2 K

2,2, 2 y+6 y+7 .k

+2(n’k +s)2F1( sl (30)

5 Results and discussion

We calculated the longitudinal S, and transverse
A\, 3, helicity amplitudes for the electromagnetic excita-
tions of nonstrange baryon resonances up to the second
resonance region. We consider the target proton and the
resonant state at rest and neglect the relativistic effects as-

sociated with the motion of the constituent quarks. With
these constraints, the interpretation of the helicity amp-
litudes is valid in the Breit (or brick-wall) frame. Hence,
the amplitudes are evaluated in the Breit frame:
(w22

2(W2+ M?)+Q?°
where M is the nucleon mass, W is the resonance mass, k
and k are the energy and momentum of the virtual photon,
respectively, and Q” = k*—ky>. For consistency, in the
calculations we use the values given by the model and not
the phenomenological masses. The matrix elements of the
electromagnetic transition operator between any two
three-quark states are expressed in terms of some expres-
sions involving the hypergeometric functions. Accord-
ingly, the Q2 dezpendence of the three helicity amplitudes,
in the range Q" < 5.0 GeV’, are presented for resonant
states and compared with experimental data points extrac-
ted from the electroproduction of mesons off protons.
Furthermore, one can compare the yp — N*,4* transverse
helicity amplitudes A;, and A;), at the real photon point
(Q2 = 0) with the proton photocouplings given by the
Particle Data Group [32].

=0+ (31)

5.1 Excitation of proton to second resonance region

In Fig. 2 graphically portrays the Q2 evolution of the
helicity amplitudes for the Roper N1440P,; resonance.
As customary in constituent quark models, the model
fails to describe the data for proton-Roper transition form
factors in the low Q2 region and the internal structure of
the resonance remains puzzling. However, for both heli-
city amplitudes, we achieved a qualitatively similar beha-
vior to that obtained by experiments [2, 5, 36], in the high
Q2 region. For the Roper resonance, deviations from the
experimental data may be attributed to the inaccuracies
arising from the fact that the state may does not belong to
the pure SU(6)-multiplet [56,0*] and may contain contri-
butions from other SU(6)-multiplets. Moreover, it is
likely that contributions beside the single quark trans-
itions may contribute to the amplitudes. However, a fairly
good phenomenological description of the helicity amp-
litudes of the Roper resonance may be found when the
state is considered as a constituent quark-gluon core sur-
rounded by the meson cloud [37], and/or meson-baryon
molecule-like state [38]. The results for the first orbitally
excited states, namely two negative parity states,
N(1520)D;3; and N(1535)S;; resonances, are given in
Figs. 3 and 4, respectively. The theoretical amplitudes
agree well with experimental data [2, 5, 6, 32, 39, 40],
whereas problems are encountered for the strength of the
Sl/z of the N(1520)D13 and Al/2 of the N(1535)S11 at low
momentum transfer. However, one can find more consist-
ent results for N(1520)D;; helicity amplitudes and form
factors in Ref. [41], where a covariant spectator quark
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N[1440] Py,

B Mokel2 |
@ Azn(9

@ ® o
o.f ]
-50F

Ay2[107% Gev172]
=
o
o

S1/2[107% Gev~'72]
18]
o

N[1440] P,

@ Azn09 |
B Mokel2

= =
o w
o o

-50F ]
0 1 2 3 1 5 0o 1 2 3 4 E
Q*|GeV?| Q*[GeV?]
Fig. 2. (color online) Proton helicity ampitudes 4,/, and S;/, for y*p — N(1440) P;; compared to experimental data [2, 5].
N[1520]1 D3 N[1520] D3
. . . 0 pr —
o PDG14 |5
= 150 } = 1= -20
- B Azn09 '>
[ w -40
&} 100} A Mokel6 | (&} ;
:g @ Mokel2 |5 = i‘@ + PDGIl14
. 50} ! folf -
2 = 8 " i B Burker03
< ) - < -100 @ Azn09
0 1 2 3 4 5 0 1 2 3 4 5
Q’[GeV?| Q*[GeV?]
N[1520] D3
5 20} J
S
7 —aof Hp?
s Il #F W Mokel2 ]
S _eo} @ Azn09
)
0 1 2 3 4 5

Q*[GeV?|
Fig. 3.
32, 39]. PDG points [32] are also shown.

model is applied to the y*N — N(1520) reaction in the
spacelike region. Furthermore, a more consistent descrip-
tion of the y*N — N (1535) transition has been achieved
within the soft-wall AdS/QCD model [42].

5.2 Excitation to A resonances

Figure 5 shows the transverse amplitudes 4, and 4,
for A(1232)P;; states. At the photon point, the calculated
values agree with the PDG data [32]. The low Q2 behavi-
or is fairly well reproduced [43-45], while the medium-
high Q2 behavior decreases too slowly with respect to the
data [36]. Thus, the helicity amplitudes are generally un-
derestimated by the model. In this study, the theoretical
value of the longitudinal transition amplitude S/, is zero,

(color online) The N (1520) D;3 helicity ampitudes 43, 4, and S}, compared to experimental data taken from Refs. [2, 5, 6,

while it has been proven in the Refs. [46-48] that the lon-
gitudinal helicity amplitude is entirely determined by the
pionic meson cloud. It is worthwhile pointing out that the
ratio

Gp _ Aip—Asp/V3
Gy A+ V343 ’

at the photon point, accounts for the possible deforma-
tion. Here, we found the theoretical value of the ratio to
be approximately Rgy = 0.01, which is not far from the
experimental value Rgy,= 0.025 + 0.005 [32].

The A(1600)P5; resonance is considered the Roper-
like excitation of A(1232). To date, there is no experi-
mental data available on photon virtualities Q2 > 0 for the

(32)
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N[1535] 8
N[535]Sy 20 13351 51
& 120 @ Azn09 {5 10}
L 100 ‘ B Mokel2] L 0
W 80F ] @ 1
o ‘qhﬂ . o -10
Ll 60} L] |
L = i ] ® é L o= 20
2 4 6 |2 -3}
- 20‘ I =
4 on - 40 5
0]
. " . M ~-50 . " . "
0 1 2 3 4 5 0 1 2 3 4 5
Q*[GeV?| Q*[GeV?|
Fig. 4. (color online) N (1535)S; proton helicity ampitudes 4,/, and S;/,, compared with experimental data provided by Refs. [2, 9].
A[1232] P33 A[1232] P33
o i > % 2 5 OoF
= 0 ® © 9| B 0o ® © ¢
L -50 T -100 '
% % |
&) &) I
T e m eG4 | T 2% |
= ) S W PDGI4 |
g <=0 S L ] 00 ® Maid07 |
=< 550 ® Ronniger < @ Ronniger13 |
0 1 2 3 4 5 6 0 1 2 3 4 5 6
2 2
Q*[Gev?] Q?[GeV?]
Fig. 5. (color online) Qz-dependence of helicity ampitudes A4, and A4,,, for A(1232) P;;-resonance of proton predicted by present

model (full curves), in comparison with the Maid2007 analysis [36] of the data by Refs. [44, 45]. PDG points [32] are also shown.

v*N — A(1600) reaction, and one can notice that the
A(1600)P5; helicity amplitudes in Fig. 6, are in fair
agreement with the PDG data points [32]. From Figs. 7
and Fig. 8 showing A(1620) S5, and A(1700) Ds; helicity
amplitudes indicate that there is agreement with the PDG
data points and scarce experimental data extracted from
the JLab-CLAS detector [32, 49-52], if we neglect the
low photon virtualities Q2 <1 for the A(1620) S;; longit-
udinal amplitude. Like other calculations within a con-
stituent quark model, in the present calculation, the dis-
crepancies in the low momentum region are considered to
be pointing out the lack of pion-coupling effects. Obvi-
ously, a meson-cloud surrounding the three constituent
quarks and mediating long-distance interactions is expec-
ted to have important contributions in the low-mo-
mentum region [46, 48]. In summary, taking the meson-
cloud contributions into account as well as the inclusion
of spin- and isospin-dependent terms in the hypercentral
potential allows a significantly improved description of
helicity amplitudes for photo- and electroproduction of
nucleon and A resonances excited from protons.
However, one should keep in mind that the present mod-
el is an analytical model containing some effective free
parameters, and the parameter fitting procedure affects

the model predictions for the observables. Accordingly,
the free parameters could be refitted anytime through dif-
ferent fixing procedures to achieve a better reproduction
of the data. Nevertheless, there is a fairly good agree-
ment in the magnitude and sign of the photocouplings
between the calculated helicity amplitude and the PDG
data points. Moreover, the calculated Q2 evolution of the
transition form factors provide a good account of the ex-
perimental data points. The results are also comparable
with those obtained by other successful theoretical ap-
proaches.

6 Conclusion

We investigated the Q2 behavior of the electromag-
netic transition form factors of nucleon and A resonances.
Theoretical results were compared with available experi-
mental data on the meson electroproduction off protons,
and it was shown that applying the spin- and isospin-de-
pendent wavefunctions leads to a better reproduction of
transverse and longitudinal helicity amplitudes for nucle-
on and A resonances, and excellent agreement with the
existing data was achieved.
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Fig. 6. (color online) Proton helicity ampitudes 4/, and A5, for A(1600) P53 resonance. PDG points [32] are also shown.
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Fig. 7. (color online) Qz—dependence of 4y, and S, helicity ampitudes for A(1620) S;,-resonance of the proton, compared to experi-
ment data [39, 52]. PDG points [32] are also shown.

A[1700] D33 A[1700] Ds;

—_ — 140

$ 150 ® WM 12 1e0 * PDG14

L @ Azn05 { Azn0S

2 100} 3 100 © Am

&) } - B Burkert03] © go} B Mokel4

7 ] 7

= 50;/ 5 60

= [ 2 = B

i—Nl ‘—N' 40}

. 0 <_": 20‘\.‘N

0
0 1 2 3 4 5 o 1 2 3 4 5
Q*[GeV?] Q*[GeV?|
A[1700] Ds;
60 . . v "

5 @ Azn05

L A8 W Mokel4

%]

=

= 9

& o

-20 . - A ;
0 1 2 3 4 5

Q*[GeV?]
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Table 4. Three-quark states with positive and negative parity. Column 2 lists the angular momentum, parity, and S3-symmetry; Lg e and Columns 3 and

4 represent the spin, S, and isospin, 7. States are shown in the last column and are written in terms of the hyperradial wave functions y,,, of the com-

binations (Y] Il ) 53 of the hyperspherical harmonics Y ln with definite S;-symmetry, and of the spin and isospin states.

Resonance L§3 S T SU(6) configurations
1 1
Py 0% 3 3 Yoo Yiojoo s
1 1
0f — — Y Q
S 2 2 Y10 Yioj00 Qs
1 1
0f — — Y Q
S 2 2 Y20 Yioj00 Qs
1 1 1
0}, 3 3 Yoz % [Y12100 Qurs + Y2p11 Qual
. 3 1 11
2y 3 3 lﬂoz\fr2 7 (Y2120 — Y12102) dms + Y21110ma | xs
3 3
Py 0; 5 5 Yoo Yiojooxs ¢s
3 3
0% 3 5 Y10 Yio00 s Ps
3 3
0% 5 3 W20 Y(oj00 s &s
+ 3 3 1
2§ 3 3 Yoz % [Yi2120 + Yr2p02] s ¢s
o+ 1 3 1 1
M 3 3 Vo2 ARG (Y2120 = Y12102) X ms + Y2111 Xma | ds
_ 1 1 1
Su Ly 3 3 Yol % [Y11710Qa4 + Y11701Qm5 ]
_ 1 1 1
1y 3 3 lﬂll%[Y[I]IOQMA+Y[1]OIQMS]
_ 3 1 1
1 3 3 Yo % [Yi1109ma + Y1101 6ms | s
_ 3 1 1
1y > 3 Y11 7 [Yi109ma + Yi1j016ms | xs
_ 1 3 1
S31 1 3 3 Yol 7 [Yi1j10xma + Yiijo1xms 1 bs
_ 1 3 1
1, 3 3 wll$[Y[I]IOXMA"'Y[I]OIXMS](/’S
_ 1 1 1
D3 1 3 3 Yol % [Yi11102m4 + Y1101 Qums |
_ 1 1 1
1y 5 5 l/’ll%[Y[I]I()QMA"'Y[I]OIQMS]
_ 3 1 1
1 5 3 Yol % [Yiio¢ma + Y1 dms L xs
_ 3 1 1
1y 3 3 Y % [Yi10¢ma + Yi01ms Lxs
_ 1 3 1
Ds; 1 3 3 Yot 7 [Yir0xma + Yijoixms 1 ds
_ 1 3 1
Ly 3 3 Y % [Yi10xma + Yooty ms | s

Appendix A: Baryon states

Baryons are considered as the bound states of three quarks, and
each baryon state is a superposition of S U(6)-configurations, fac-
torized as:

lI"3q = LPSq (.0» ) X'spin -¢isospin -Ocolor- (A 1 )

Various parts of the three-quark wave function must be combined
to obtain an entirely antisymmetric wavefunction. To this aim, we
need to study the behavior of the different factors with respect to

the permutations of three objects (that is, with respect to the group
S3) [13]. Generally, there is three symmetry types for any three-
particle wavefunction: symmetry (S), antisymmetry (A), mixed
symmetry with symmetric pair (MS), and mixed symmetry with
antisymmetric pair (MA). Choosing the antisymmetric color sing-
let combination for the color part @, the antisymmetric combin-
ation is disregarded, and there would be only two states available
for three particles. The remaining three-quark spin and isospin
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states, with definite S;-symmetry, are defined as:

11 1\3 11 1\1
((3:2)13)3) ﬂMF\((é’i)l’éH’

11 1\1

(-3)e2)3) "

In the case of the spin- and isospin (flavour)-independent interac-

s =

Pma =

tio, we have to introduce products of spin and isospin states with
definite S;-symmetry. In the following, the explicit forms are

presented only for the case that both spin and isospin factors have
mixed symmetry, where the remaining ones are trivial:
1 1
Qs = — [xma dma +xms dus], Qu = — [xma dms —xms dmal,
v lx ] 7 lx |
1
V2

L
V2

[YMA éMs +xMs dmal-
(A3)

Qs = [xma dma —xms dms], Qma =

The explicit form of three-quark states with positive and negat-
ive parity is given in Table 4.
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