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Abstract: Inasmuch as the hydrostatic structure of the interior of neutron stars uniquely depends on the equation of

state (EOS), the inverse constraints on EOS from astrophysical observations have been an important method for re-

vealing the properties of high density matter. Currently, most EOS for neutron star matter are given in tabular form,

but these numerical tables can have quite different resolution. To guarantee both the accuracy and efficiency in com-

puting the Tolman-Oppenheimer-Volkoff equations, a concise standard for generating EOS tables with suitable resol-

ution is investigated. It is shown that EOS tables with 50 points logarithmic-uniformly distributed in the supra-nucle-

ar density segment [pg, 10p¢], where py is the nuclear saturation density, correspond to the interpolation induced er-
rors of ~0.02% for the gravitational mass A/ and ~0.2% for the tidal deformability A.
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1 Introduction

The observed pulsars [1-3] are generally considered
as neutron stars. Most of the observed neutron stars have
a mass around 1.4 solar masses (My) [4], and PSR
J0348+0432 is the heaviest observed neutron star with a
precise mass measurement (2.01 £0.04 M) [5]. From a
theoretical perspective, the macroscopic properties of a
neutron star, such as the maximum mass (Mp,x), depend
strongly on the equation of state (EOS) of high density
matter [6-8]. M.« of a neutron star delimits whether it is
hydrostatically stable or if it will finally collapse into a
black hole through the oscillation process [9]. The recent
constraints on M.« , based on the GW170817 observa-
tion, are around 2.20 My. For example, based on the
GW170817 observation, three different groups give the
constraint on the maximum mass as My,,x < 2.17 My, [10],
215 Mg < My <225 Mg [11] and 2.16 Mg < My <
2.28 My, [12]. According to the same gravitational waves
(GW) observation, constraint on the radius of a canonical
neutron star is given as 11.82 < R, ,/km < 13.72 [13] and
constraint on the radius of a neutron star at M = 1.6 M, is
Ri¢ = 10.7 cm [14].

A number of pioneering works have predicted gravit-
ational waves emitted from a binary neutron star (BNS)
system [15-17]. The numerical simulations of BNS mer-

gers, with different choices of EOS, illustrate the possib-
ility for indirectly probing the properties of neutron star
matter with gravitational waves [18-20]. Postnikov et al.
pointed out that the dimensionless tidal deformability A,
which can be obtained from the GW signals during the
coalescence process of BNS, can characterize different
EOS [21]. The first GW detection of BNS coalescence
(GW170817) put a constraint on the tidal deformability
for canonical neutron stars as A;4 <800 [22] from the
first analysis. An improved analysis of GW170817
provided both the upper and lower limits for the tidal de-
formability as A;4=190*3), which leads to a constraint
on EOS at twice the nuclear saturation density as
p(2po) = 21.8571685MeV /fm? [23]. With the observation-
al constraints on A, Most et al. generated millions of EOS
from their parametrized sets and then exploited more than
10° equilibrium models for neutron stars to obtain the typ-
ical radius Ry 4 = 12397939 km at 20" level [24].

The theoretical determination of A =(2/3)(c?/G)’
(R/My’k; requires precise inner solutions of the Tolman-
Oppenheimer-Volkoff (TOV) equations [25-27]. The rel-
evant tidal Love number k; is determined by the hydro-
static distribution in the stars [25]. The tidal deformabil-
ity A deduced from k; can be used to discriminate EOS.
On the other hand, there is no unified model as yet to de-
scribe EOS of the compressed matter [28-30]. Even in a
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specific model, it generally takes complex computations
to provide the p—&— p relation, where p is the baryon
number density, ¢ is the energy density and p is the pres-
sure. Therefore, numerical EOS tables become a conveni-
ent choice in a neutron star study. For the realistic EOS
(that is, tabular EOS), the solutions of stellar structures
must be obtained by numerical integration.

In the integration process, the single-step errors must
be restrained to provide accurate results for k;. In con-
trast to the integration errors that can be handled simply
with shorter step sizes, the interpolation induced errors
are mainly affected by the resolution of EOS tables. Non-
etheless, when employing a large number of EOS to in-
vestigate the neutron star characteristics by Bayesian
methods [23, 24, 31, 32], the efficiency of interpolation is
of crucial importance. As large size EOS tables are im-
practical for a statistical study, a suitable resolution for
EOS tables becomes particularly important.

This paper is organized as follows. In Section 2, a
brief introduction of practical techniques for dealing with
both the integration and the interpolation is given. Two
widely used interpolation methods are introduced to in-
spect the interpolation induced errors from EOS tables.
The minimal size of an EOS table that provides accurate
results for A7 and A is also discussed. In Section 3, we ex-
tend the investigation of different meshing methods for
EOS tables to further examine their model dependence. A
concise summary is given in the last section.

2 Numerical setup and EOS grid resolution

In general relativity, the structure of a static, non-ro-
tating and spherically compact star is normally described
by the TOV equations. The TOV equations can be writ-
ten as [26, 27],

4 3
dp G(‘”%)(m( " nrzp)
ar L, 2Gm(n) M
rel1- P
dm(r) = dner?, )
dr

where m(r) refers to the gravitational mass within a radi-
us r, and G and ¢ are the gravitational constant and the
speed of light.

An important method to investigate the macroscopic
properties of neutron stars is to numerically integrate Egs.
(1) and (2) from the center (m =0, r =0, £ = &.) to the sur-
face (p =0, r = R and m(R) = M). The widely used forth-
order Runge-Kutta (RK-4) method [33, 34] is applied as
the high precision integration algorithm in this work.
Moreover, we denote the relative deviation of a quantity
Q as resQ (=1Q0-Qr|/Qr, where Qr is the exact value)

to discuss its precision.

The RK-4 method with adaptive step-size [35-37] can
guarantee the global accuracy of the results. In a fixed
step-size computation, the local errors at the outer layers
can increase rapidly when integrating outwards, which is
shown in Fig. 1. The residuals for the final value of the
radius are strongly relevant for these errors. The adaptive
method effectively controls the local integration errors at
the outer crust layer, several meters from the stellar sur-
face. This technique is expected to improve the computa-
tional precision significantly at the crust, which is of
great concern in investigations of low mass stars. With a
proper integration method, the induced radial errors
should be <0.1%.

10° |- -

10° |- adaptive step-size (|

100 | — — - fixed step-size n

relative local residuals (%)

10-6..I....I....I....I....I..-
10.6 10.8 11.0 11.2 11.4
r(km)
Fig. 1. (color online) Relative local residuals for the fixed

step-size and adaptive step-size. Relative local residual is
defined as the error of pressure increment in each step di-
vided by the exact value of pressure increment. The dashed
line represents the fixed step-size (4 = 10 (m)) while the sol-
id line denotes the adaptive step-size. Here, APR EOS is
employed and the central density is 4po.

Apparently, the most important input in solving Eqgs.
(1) and (2) is the & — p relation. Currently, EOS in tabular
form is the most common technique in neutron star in-
vestigations. To properly use EOS tables, it is necessary
to apply an interpolation method to obtain intermediate
values. The errors generated from the interpolation pro-
cess could be quite different, depending both on the spe-
cific method of interpolation and on the resolution of
EOS tables.

A simple but non-rigorous approximation for EOS
tables could be a piecewise polytropic,

logop =1og oK +7v(log pe —10g p€0) . 3)

where &y, v and K are considered as constant within each
segment.

In the polytropic approximation, the simplest interpol-

ation is to transform all data points from an EOS table in-
to logarithmic scale and to implement linear interpola-
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tion. For example, the value (e,p) between its nearest
neighbors (&, p,) and (&,+1, pn+1) could be given as [38, 39],

log,op—logopn _ 10g;gpn+1 —10g 0pn )

log,ge —logpen  10g p&ns1 —10g 080
In addition to linear interpolation, an advanced method
that simultaneously preserves the monotony and the con-
tinuity of the first derivative of EOS is the Piecewise Cu-
bic Hermite Interpolating Polynomial (PCHIP) [40, 41],
which can be written as follows,

P (8) = PnQn (‘9) + Pn+1@n+1 (8) + knﬁn (8) + kn+lﬁn+l (‘9) 5 (5)
where k, and k., are the slopes of the interpolated func-
tion p(e) at &, and &,4;, respectively. Specific rules for

node slopes k, are introduced in the Appendix. The four
Hermitian functions are given as,

2
a,,(g)=(1+2 &7 )(8_8"“), (6)
En+l —En J\En— En+1
E—E&, E— &, 2
an+1(e)=(1+2 ”*‘)( : ) (7
En—En+1 )\ En — En+l
E— &, 2
B (&) = (s—s,o(—”“) : (®)
n — En+l
E— &, 2
ﬁn+1(8)=(8—8n+1)(—") . 9
n— En+l

In order to facilitate the analysis, we divide the tabulated
EOS into two parts: the low density segment [0,p0] and
the supra-nuclear segment [pg, 10pg]. In actual calcula-
tions, the minimum density is adopted as 10* kg/m?>. For
comparison, we define APR-a as the exact EOS, which is
spline-fitted from the well-known APR EOS [42] by us-
ing a smoothing parameter 0.989 (corresponding to the

Table 1.

smallest R-square). To discuss the errors induced by the
interpolation process, we uniformly sample from APR-a
with logarithmic density in the two segments to produce
EOS tables with different resolution. The grid points in
each segment are logarithmic-uniform as log;opn+1—
logopn = constant. Currently, most of the available EOS
tables are provided with grid points of this type (denoted
as the U-grid) in the high density segment [43]. We also
use a concise symbol to denote the resolution of an EOS
table. For example, APR-20(200) indicates that the table
APR EOS contains in total 200 points, with 20 points in
the supra-nuclear density segment.

We produce EOS tables with sizes 20(200), 20(400),
50(200) and 50(100) from APR-a EOS with the U-grid.
The relative residuals are estimated with the two interpol-
ation methods mentioned above, and the results are
present in Table 1. It is worth pointing out that the integ-
ration process is adequately precise if the mass errors are
at the level of ~0.001%, which are negligible compared
with the interpolation induced errors.

As is known, the results for the mass are the most
sensitive to EOS in the central region of a star. As shown
in Table 1, the smaller resM for PCHIP indicates that
PCHIPinterpolationisadvantageousoverlinearinterpolation.

The precision of A is affected simultaneously by ks,
M and R. In a U-grid, the precision of k; is generally of
the same order as )/ , and their relative residuals can be
viewed as rough indicators of the precision of the hydro-
static solution. The error of R is mainly related to the in-
tegration step-size, which we will not discuss in detail
here, but as a conclusion the relative error of R is ~0.01%
for the four EOS in Table 1. Thus, it is easy to under-
stand that as resR < resM and resk, ~ resM for APR-

Relative residuals for the two interpolation methods. The left-most column (p.) is the central density for the corresponding row. The relative

residuals resM and resA are defined as the relative deviations of A7 and A with respect to their exact solutions.

APR-20(200)

APR-50(200)

exact
linear PCHIP linear PCHIP
pe(po) M(Mo) resM (%) resA(%) resM(%) resA(%) resM (%) resA(%) resM (%) resA(%)
3.3377 1.0900 0.0669 0.3517 0.0887 0.4766 0.0186 0.0624 0.0135 0.0525
4.0071 1.4000 0.4114 2.8483 0.3859 24134 0.0458 0.3946 0.0284 0.2269
4.6828 1.6500 0.2489 1.4483 0.1259 0.6086 0.0496 0.4255 0.0253 0.2667
6.7543 2.0500 0.0562 0.2848 0.0104 0.0797 0.0232 0.1820 0.0108 0.1404
APR-20(400) APR-50(100)
exact
linear PCHIP linear PCHIP
pc(Po) M(Mo) resM (%) resA(%) resM (%) resA(%) resM (%) resA(%) resM (%) resA(%)
3.3377 1.0900 0.0672 0.3788 0.0894 0.4812 0.0298 0.8041 0.0130 0.3395
4.0071 1.4000 0.4066 2.8416 0.3816 2.4207 0.0465 0.4866 0.0404 0.3764
4.6828 1.6500 0.2313 1.4434 0.1251 0.6026 0.0537 0.5554 0.0408 0.4020
6.7543 2.0500 0.0562 0.2882 0.0103 0.0758 0.0208 0.2742 0.0114 0.0917

054108-3



Chinese Physics C Vol. 43, No. 5 (2019) 054108

20(200) and APR-20(400), the relative residual of the
Love number is ~ 6 resM.

Our calculation shows that for both PCHIP and linear
interpolation, the EOS tables with denser data points in
the high density segment significantly decrease both the
mass and the Love number residuals. The number of data
points in APR-20(200) is the same as in APR-50(200),
but APR-50(200) produces results which are much more
precise due to better resolution in the high density seg-
ment. On the other hand, comparing the data for APR-
20(400) and APR-20(200) in Table 1, it may be seen that
the improvement of the resolution at low densities can not
significantly reduce the interpolation induced errors.

These comparisons indicate that the resolution of
EOS tables for supra-nuclear densities is much more im-
portant than the total number of data points. In addition,
we note that a too small size of an EOS table, such as
APR-50(100), violates the approximation resk ~ resM,
and thus reduces the A precision, especially for the low
mass stars. With additional tests of the resolution in both
density segments, the minimal size for the U-grid APR
EOS is finally determined as 50(150), which corresponds
to the interpolation induced errors of ~0.02% for A7 and
~0.2% for A.

Actually, a number of EOS used in literature prefer to
adopt the table size around 20(200) with the U-grid [43],
such as SFHo, GShen and LS EOS [44-46]. The interpol-
ation induced errors for the stellar mass A produced by
these EOS tables are expected to be 0.1%~1%. Accord-
ing to the above discussion, it is better that the EOS
tables contain more than 50 grid points in the supra-nuc-
lear density segment [pg, 10p0], as they significantly re-
duce the interpolation induced errors, and thus lead to
much more precise solutions for the stellar mass A and
tidal deformability A.

3 Dependence on grid specification

To eliminate accidental factors, we further inspect the
interpolation errors for several different grid modes,
defined as

Ci, for G—grid
logoon+1 —10g100n
=3 JaeCoos) (10)
logon —10g100n-1 ———, forue—grid
l+eCn

where C; and C, are adjustable coefficients to meet the
resolution requirements. Apparently, taking C; = 1 for the
G-grid is equivalent to the U-grid we mentioned in Sec-
tion 2.

Four different grid modes are defined as follows. (i)
For the uu-grid, we take C; =1 in the low density seg-
ment and C; = 0.1 in the high density segment. (ii) For the
ue-grid, we adopt C, = 0.56 in the supra-nuclear density
segment but use the same grid as the uu-grid in the low

density segment. (iii) For the U-grid, the EOS table is
logarithmic-uniform (C; = 1), to be consistent with Sec-
tion 2. (iv) For the G-grid, C; =0.9785 in both density
segments. A concise example of the four grids for APR-
50(150) is plotted in Fig. 2.
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Fig. 2. (color online) Baryon density grid points for APR-

50(150) and four different grid modes

The uwuu-grid implies a uniform distribution in
[00,10p0] and logarithmic-uniform in [0,p0]. It is an ex-
treme distribution where the grid points are concentrated
excessively on the high density side. The U-grid could be
considered as the opposite to the uu-grid. Any distribu-
tion that is less contractive than the U-grid is unjustified
according to the discussion in Section 2. From the defini-
tions of the G-grid and ue-grid, we see that they are al-
most transitional schemes between the U-grid and wuu-
grid. The ue-grid, different from the framework of the G-
grid, is designed to restrain the contraction rate, so that
the final interval of the logarithmic grid is expected to be
about half of the initial one.

From the comparison of the residuals of the four grids
shown in Fig. 3, it is clear that the interpolation induced
errors are related both to the choice of the EOS mesh and
to the central density. For a neutron star, if its central
density is near a data point in the EOS tables, it naturally
corresponds to a smaller error. For example, the results
for the uu-grid, which is the most dense on the high dens-
ity side, are most precise for ~ 2 M, but least precise on
the low mass side. In addition, the interpolation errors of
EOS itself are generally small near a data point, and reach
a maximum at an intermediate position before the next
data point. These regular changes lead to oscillatory con-
tours in Fig. 3.

Considering the practicability and overall accuracy,
the widely-used U-grid remains the optimal choice for
EOS tables. Although there is a certain dependence of the
accuracy on the meshing method, we may still conclude
from Table 1 and Fig. 3 that the EOS tables of size
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Fig. 3. (color online) Residuals of APR-20(200) and APR-

50(150) for the four different grids and with PCHIP inter-
polation. The interpolation induced errors are defined as the
relative deviations of a7 with respect to the exact solutions.

50(150) could effectively limit the interpolation induced
errors of the stellar mass to resM ~0.02% for 1.09 M, <
M <2.05 M.

The validity of the above conclusion may be doubted
since all EOS tables in our comparison were sam-
pled from a single EOS model. To make the conclusion
more reliable, we extended the same interpolation trials to
the parametrized asymmetric nucleon matter EOS [47].
We generated several tens of EOS tables in the resolu-
tion 50(150), and then estimated the interpolation errors
with different methods. We found that they are consist-
ent with the above analyses of APR EOS.

4 Summary and conclusion

We investigated the traditional numerical methods for
computing the solutions of the TOV equations including

Appendix A: Piecewise cubic hermite interpolation

The method used in this work to obtain the nodal slopes &, and
ku+1 , used in Eq. (5) for Hermite interpolation, is a weighted aver-
age of the nodal slopes &, that preserves the shape of the interpol-
ated function at the original data points. The expressions for nodal
slopes &, at the inner-points and end-points are given in Egs. (A1)-
(A2).

In general, k, at each node is uniquely determined by the differ-
ential properties at the proximal points. Hermite interpolation
therefore ensures that the first derivative dp/de is continuous every-
where. We denote the right differential step of &, as h, = 41 — &5 ,
and the right differential slope as v, =(pu+1—pu)/hn. When
sgn(vy—1) # sgn(v,), we choose k, =0 so that the extremum of data
points is coincident with the interpolated function, although it is

both the integration techniques and the interpolation
methods. For convenience of discussion, we separated the
global errors into integration errors and interpolation in-
duced errors. As the integration residuals near the stellar
surface are divergent and the radial precision can be
strongly affected by the choice of step-size, the adaptive
step-size method was adopted.

Currently, the bulk of available EOS tables are
provided in the general size of ~20(200) [42-46]. As the
errors from the integration process can be handled well,
the dominant errors when using these EOS tables come
from the interpolation process. The relationship between
the interpolation induced errors and the resolution of the
EOS table with the U-grid was investigated in detail. It is
concluded that increasing the number of data points in the
supra-nuclear density segment [pg, 10p9] can effectively
reduce the interpolation induced errors. The EOS table
size 50(150) corresponds to the relative residuals for ps
and A of ~0.02% and ~0.2%, respectively, which is much
more accurate than obtained with the size 20(200). In ad-
dition, it was also shown that the PCHIP method is more
accurate than linear interpolation.

The dependence on the meshing methods was also in-
spected. Among the four proposed meshing methods, the
U-grid remains the optimal method for generating EOS
tables for computing intermediate mass neutron stars. The
dependence on the EOS model was also examined using
the parametrized asymmetric nucleonic matter EOS [47].
It is concluded that EOS tables with size 50(150) can sig-
nificantly improve the accuracy compared with the gener-
al size 20(200), despite of the differences in the meshing
methods, EOS models or interpolation methods. Finally,
all source programs (C codes) are publicly available,
please refer to Ref. [48].

We would like to thank Bao-An Li for helpful discus-
sions.

not very likely to have sgn(v,-1) # sgn(v,) for a rigorous EOS. In the
general case, &, at the inner-points is given as,
~ _ hp—1Vp—1 +hyvy
" et +hy
Slope estimation at the two endpoints k; and kg is slightly dif-
ferent from the inner-points. We denote the differential step from
an endpoint to its nearest neighbor as &y, = &1, — €] end, and from the
nearest neighbor to sub-neighbor as h. = &, — &1, while the corres-
Vis = (P1s = Plend)/h1.  and
va« = (P2« — p1+)/ h2. In the calculations, we first compute kj eng from
Eq. (A2). If sgn(kiena) # sgn(vi,) we choose kjena =0, else if

ponding differential slopes are

054108-5



Chinese Physics C Vol. 43, No. 5 (2019) 054108

sgn(viy) # sgn(va.) and [kyena| > 3v1.l we choose kiena =31y, and if

the tests above are false kj ¢qq remains invariant.

Qhy +ho ) Vie = hiavoe

A2
hyw+ hos (A2)

kl,end =

The specific rules for k, above are designed to preserve mono-

tony and to avoid overshooting, as the interpolated EOS, in gener-

al, is not expected to be oscillatory and barotropic.
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