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1 Introduction

Black holes are interesting objects predicted by the
theory of general relativity. To understand the physics of
these objects, we can study the physical processes that
occur in spacetime associated with them. Among these
studies, we can mention the ones corresponding to Hawk-
ing radiation, scattering of particles and fields of differ-
ent spins, and resonant frequencies [1-9]. The last one is
of special interest to us and will be examined in this study
on scalar fields.

The investigation of these phenomena involves the
solution of an ordinary differential equation. In our case,
we want to solve the Klein —Gordon equation for a
charged massive scalar field in the background under
consideration. Thus, to obtain the exact solution for this
equation, we need to use the most general function in
mathematical physics, namely, Heun functions. During
last decades, Heun functions have gained increasingly
more importance due to its large number of applications
in different areas of physics and mathematics. Otherwise,
without the use of these functions, finding the exact ana-
lytical solutions of the Klein—Gordon equation in the en-
tire spacetime is not possible [10-14].

Recently, several physical processes in the back-
ground of Kerr —Sen black holes were studied, for in-
stance, the scattering of photons and the evaporation pro-
cess. Furthermore, the conformal symmetries of a
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Kerr—Sen black hole and the instability of a bound state
for a charged massive scalar field in the spacetime back-
ground of such a black hole is studied. In addition, the
holographic dual of a conformal field theory (CFT) for
the scattering process in the background of a Kerr—Sen
black hole is investigated. Other important issues regard-
ing the Kerr—Sen background are as follows: properties of
shadows, cosmic censorship conjecture, Hawking temper-
ature and entropy, and the increasing amount of evidence
that various galaxies contain a supermassive black hole at
their center. Therefore, these lines of research have mo-
tivated researchers to develop theoretical approaches in
order to explain such phenomena [15-23].

The thermal radiation of black holes describes black
body radiation as being a quantum effect, as predicted in
the mid-1970s [24, 25]. It constitutes one of the most im-
portant characteristic which arises as an effect of the
curvature of the spacetime on quantum fields. Thus, it is
essentially a semiclassical effect due ti the fact that it oc-
curs in a spacetime generated by classical gravitational
fields which the matter fields are quantized. This implies
that the Hawking radiation connects classical gravity and
quantum field theory and hence its investigation could
help us to understand gravity itself in addition to a better
understanding of the physics of a black hole [26-29].
Therefore, it is important, from different perspectives, to
investigate the Hawking radiation emitted by black holes.

While studying the physics of black holes, we can ob-
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tain information through the interaction of these fields
with different quantum fields. One of these information
are related to the resonant frequencies of the radiation
emitted by black holes associated with exponentially de-
caying oscillations whose values depend on the paramet-
ers describing the black holes, such as mass, charge and
angular momentum. Thus, calculating and analyzing
these frequencies to obtain some information about the
physics of these objects is important.

In this paper, we use the confluent Heun functions to
obtain the exact solution of the Klein—Gordon equation
for a charged massive scalar field in the Kerr—Sen space-
time. This solution is used to study the resonant fre-
quency and Hawking radiation. While discussing the
Hawking radiation, we study some aspects of the thermo-
dynamics of this black hole.

The outline of this paper is as follows. In Section 2,
we present the solutions of the Klein—Gordon equation
for a charged massive scalar field in the Kerr—Sen black
hole spacetime for both angular and radial parts. In Sec-
tion 3, we discuss the Hawking radiation of scalar waves.
In Section 4, we obtain the resonant frequencies for both
massive and massless scalar particles. Finally, in Section
5, the conclusions are provided.

2 Scalar fields in the Kerr—Sen black hole

We want to study the interaction between scalar fields
and the background corresponding to the four-dimension-
al charged and rotating black hole solution in the low en-
ergy limit of the heterotic string field theory, called
Kerr—Sen spacetime (KS spacetime), whose line element
in the Boyer—Lindquist coordinates is given by [30]

1 Pk

ds? = = ——(Aks — @ sin*0) P + TS 24 pi g a6?
P KS
2Mra®sin” 6
+ (Psz +a’sin’ 0+ %] sin® 6 dg®
Pxs
M
_ 2ra sinzgdtdgb, M
Pxs
with
Aks =1 +2(b— M)r+a* = (r—ru)(r—r-), @
re=(M=b)x V(M ~b)?~d?, 3
pg = 1% +2br +a*cos® 6, “)
0?
b =T 5
o (5)

where M, Q, and a = J/M denote the mass, charge, and
angular momentum per unit mass of the KS black hole,
respectively. The parameter b is related to the dilaton
field.

The four-vector electromagnetic potential is given by

[31]
)
Ag:[—%,o,o,@%mﬂ. 6)
Pxs Pks

In what follows, let us obtain some geometrical and
thermodynamics parameters of the KS spacetime, which
will be used in the next section.

Firstly, let us calculate the gravitational acceleration

on the KS black hole horizon surface, k., which is given
by

1 dAKs Iy —rs
Ke == =————> ()
2(r; +2bry +a?) dr l=r,  2(ri +2bri+a?)
As for the Hawking temperature, 7., we have
kih

Te=—, 8
== Sk (8)

where the thermodynamic quantity 8. is given by

1

+ = . 9
Be=rr ©)

The surface areas of the exterior and interior event
horizons, A., are given by

A= [ [ vegaoas

so that the entropy at the event horizon, S ., can be writ-
ten as

=dary(r. —2b), (10)
r=r.

Ax
4

The dragging angular velocity, Q., and the electric
potential, ®., are very near the event horizon r., and are
given by

Sy = =nre(ry —2b). (1)

_ 81 _ a
860 |y, r2H2bro+a®

Ory

P24+ 2bry +a®

Q, = (12)

0. = (13)

Note that all these quantities depend on the event ho-
rizons that are determined by the parameters characteriz-
ing the black hole and the dilaton.

2.1 Klein—Gordon equation

Now, to study the behavior of a charged massive scal-
ar field in a curved spacetime, we need to consider the
covariant Klein—Gordon equation, which can be written
as

1
=

05(87T \—g0;) —ie(0,A7) — 2ieA” D,
ie
V8
where po and e denote the mass and the charge of the
scalar particle, respectively. Note that we have chosen the

A% (D \=8) - *ATAy — 5| ¥ =0, (14)
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unitsG=c=h=1.
Thus, substituting Egs. (1) and (6) into Eq. (14), we

obtain
1 * a 0
{_A_ (r2+2br+a2)2 Agsa’sin6 Er + — Ep (AKSE)

KS
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At this point, we need to choose a separation of vari-
ables for the scalar wave function ¥ that permits us to
separate the radial and angular parts of the Klein—Gordon
equation (15). In this manner, by taking into account the
spacetime symmetry, we can write W as

¥ = ¥(r,1) = R(r)S (0)e"Pe ™, (16)

where m is the azimuthal quantum number and w is the
frequency (energy) of the scalar particle.

In what follows, we will solve both the angular and
radial equations of the covariant Klein—Gordon equation.

2.2 Angular equation

Thus, by substituting Eq. (16) into (15), we obtain the
angular part of the covariant Klein —Gordon equation,
namely,

511119;0 (smG%) (Am+c%cos20— 29)S 0, (17)
with

& = (W? - 1), (18)

A = A =k +2awm, (19)

where 4,, is a separation constant.

Thus, to solve Eq. (17) we use the procedure de-
veloped in our recent papers (see for example [32] and
references therein). In this manner, the general solution of
the angular part of the covariant Klein—Gordon equation
for a charged massive scalar field in the KS black hole,
in the region exterior to the event horizon, can be written
as

S (x) =x: G (x = 1):7(C; HeunC(a,B,y,6,1;x)
+C, x? HeunC(a, -8,7,6,17; )}, (20)
with
x = cos>6, (21

where C; and C, are constants, and the parameters «, £,
v, 6, and i are given by
a=0, (22)

1
B=3 (23)
v =m, (24)

2

__%
§=-, (25)
n= %(1 +m? = Ay). (26)

Due to the fact that 8 is not necessarily an integer, these
two functions form linearly independent solutions of the
confluent Heun differential equation [33], namely,

2
CUW (1 y+1)dUW
dx? x x—=1/ dx

+ (’;‘ + X_LI) Ux) =0, 27)

where U(x) = HeunC(a,,v,6,1;x) is the confluent Heun
function. The parameters u and v are given by
1
p=sla=p-y+af-py)-n (28)
1
v:z(a/+,8+y+a/y+ﬁy)+6+n. (29)

2.3 Radial equation

The radial part of the covariant Klein—Gordon equa-
tion can be written as

dir(A ((111:) { j{s [w(r +2br+a2) (am+eQr)]
~[An+30? +2br+a®)||R =0. (30)

The general solution of Eq. (30), in the region exteri-
or to the event horizon, can be written as

R(x) =x (x — 1)}e5*{C} HeunC(a,B,7,6,1; %)
+C, x P HeunC(a, 5,7, 5,1];x)}, (31)

where we have introduced a new variable defined by
X = i_ (32)

r——ry

In Eq. (31), C| and C, are constants, and the paramet-
ers a, B8, v, d, and n are now given by

a=2i(ry — r_)(a)2 —/1(2])%, (33)

B= 2 [w(r} +2br, +a®)— (am+eQr,)], 3

Fe—T_

Y= [w(r? +2br_ +a®) — (am +eOr_)], (35)

8= (ry —r)[2eQu+ (ry +r- +2b)(ud - 2071, (36)
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Next, we will use this radial solution to investigate
two interesting physical phenomena: the black hole radi-
ation and the discrete spectrum of energy levels.

3 Hawking radiation

In this section, we will use the radial solution and the
properties of the confluent Heun function in order to ob-
tain the Hawking radiation spectrum.

The expansion in power series of the confluent Heun
function with respect to the independent variable x, in a
neighborhood of the regular singular point x = 0, is given
by [34]

1 (-aB+By+2n—a+p+y)
2 B+1)
1

+ 3 m (CY2,32 - 20/527 +3272
—dnaf + 4By +4a’B - 2a8* — 6aPy
+48%y +4By* + 4> — 8nac + 8B + 81y
+3a% —daf—4day+3B% +4B6

+108y +3y* +8n+4B+45 +4y)x* + ...

HeunC(a,B,v,0,m;x) =1+ =

(38)

Thus, the radial solution when r — r,, which implies
that x — 0, behaves as

R() ~Cy (r=ry PP+ Cy (r—r) PP, 39)

where only the contributions of the first term in the ex-
pansion were taken into account, and all remaining con-
stants were included in C; and C;. Then, by taking into
account the solution of time dependence, near the KS
black hole event horizon r,, we can write

Y= e (r—r,) P (40)

In this case, from Eq. (34), for the parameter 8, we
obtain

S = w=w0), (41)
where

we =mly +eD,. (42)
Thus, the ingoing and outgoing wave solutions in the KS

black hole horizon surface can be written as

P = e (r—ry) T2 @70 (43)

Wour(r > ry) = €7 (r — ry )3 @79,

(44)
The relative scattering probability of the scalar wave

at the exterior event horizon surface is given by

Youlr>ry) 2
Wou(r <r)
Thus, according to the Damour—Ruffini—Sannan method
[27, 35], we can obtain a Hawking radiation spectrum of
scalar particles, which is given by
_ I, 1
No=17F, = e —1
Equation (46) corresponds to the black body spec-
trum described by charged massive scalar particles that
are emitted from the KS black hole. In fact, this is a fi-
nite solution for the wave function near the exterior event
horizon of the background spacetime under consideration.
Now, we consider the limit where w is a continuous
variable. Thus, we obtain the following expression for the
total rate of particle emission

Iy (w)= = e mw-w) _ g B(w-w.)

(45)

(46)

dN 1
—dw= 1 —. 47
R gn() @
Furthermore, the mass loss rate is given by
dM 1 > 11
—=-— | N,wdw=-——Lip(** 48
el wdo=-o ),  (48)

where Li,(z) is the polylogarithm function with » running
from 1 to co. Therefore, the flux of charged scalar
particles at infinity, @, can be calculated as
_|dM 11
a2
According to the canonical assembly theory [36], as-
suming that the frequency (energy) is continuous, the free
energy of the scalar particle is given by

© T, (w) @ 4 In(1
F, =—- dw =
’ fo R B

Finally, the entropy of the KS black hole is given by

5= 9F OF e[+ (B, —1)]
Y OBy o — 1

The above results show that the radiation spectrum,

flux of particles, as well as the thermodynamics variables

such as free energy and entropy are similar to the corres-

ponding ones in the framework of Kerr—Sen black hole
spacetime.

—Liy(e#*).

(49)

— eﬁmu) (50

—In(1-e%%%). (51)

4 Resonant frequencies

In this section, we want to compute the field energies,
that is, the resonant frequencies for scalar waves
propagating in a Kerr—Sen black hole. To do this, we will

035102-4



Chinese Physics C Vol. 43, No. 3 (2019) 035102

follow our technique developed in Ref. [37].

This approach imposes boundary conditions on the ra-
dial solution, which are as follows: the radial solution
should be finite on the exterior event horizon and well be-
haved at an asymptotic infinity.

The first condition is completely satisfied as we can
see from the wave solution that describes the Hawking ra-
diation in the background under consideration. The latter
condition requires that R(x) must have a polynomial form.
Then, the function HeunC(a,,7,6,n;x) becomes a poly-
nomial of degree n if the following §-condition is satis-
fied

OB - (52)
a 2
where n ={0,1,2,...} is the principal quantum number.
Substituting Egs. (33)—(36) into Eq. (52), we obtain
the following expression that involves the resonant fre-
quencies associated with charged massive scalar particles
in a Kerr—Sen black holes:
(&%)
w|l—+—
Ky K_

weQ+ M(/J(Z) —2w?)
+

(12 - w?)t 2
—(&+&)] ——(n+1). (53)
Ky K-

This quantization law gives a complex number, that
is, we obtain a frequency (energy) spectrum such that
w = wg +1 wy, where wr and wj are the real and imagin-
ary parts, respectively. Note that there is no dependence
on the eigenvalue 4,, and hence the eigenvalues given by
Eq. (53) are not degenerate.

Equation (53) is a second-order equation for w and
hence has two solutions, which can be numerically ob-
tained using the FindRoot function in the Wolfram
Mathematica” 9, such that (w—wn(l))(w—wn(z)) =0. The
resonant frequencies wo(l) and wo(z) are shown in Tables 1
and 2, respectively, where the units are given as mul-
tiples of the total mass M.

Table 1. Scalar resonant frequencies w,,(l) of a Kerr—Sen black hole
for e=0.1, a=0.5, m=0 and po =0.8. We focus on the funda-

mental mode n = 0.

b Re[w, "] Im[w, "]
0.00 0.00000 0.08126
0.01 0.00680 0.08101
0.04 0.01361 0.08018
0.09 0.02045 0.07861
0.16 0.02733 0.07582
0.25 0.03431 0.07074
0.36 0.04151 0.05995
0.49 0.04938 0.01948
0.64 ~0.04467 0.00000

Table 2.
for e=0.1, a=0.5, m=0 and uo = 0.8 . We focus on the fundamental

Scalar resonant frequencies a),,(z) of a Kerr-Sen black hole

mode n=0.

b Refw?] Im{w,”]
0.00 —0.80687 0.07081
0.01 —0.80781 0.07236
0.04 —0.80977 0.07310
0.09 —0.81309 0.07252
0.16 —0.81824 0.06926
0.25 —0.82530 0.05996
0.36 —0.82942 0.03705
0.49 —0.80429 0.00103
0.64 —0.62255 0.00000

The resonant frequencies obtained are shown in Figs.
1,2,3,4,5, and 6 as a function of e, a, b, m, uy, and n, re-
spectively, where the units are given as multiples of the
total mass M.

0.8

0.7_ O — O —— ¢ —¢

0.6 F

Zl05¢F

50'4' S N N Mmooy 4
S ° o o o o

0.3F Vi / / Y / /I
7} ) Y ) ) V)

0.2_ r— o ——0—0—9

011 012 0I3 014 015 0.16
Re[w, "]

- n=0 = n=1 - n=2

Fig. 1.  (color online) Scalar resonant frequencies of a
Kerr—Sen black hole as a function of e for a =0.4, b= 0.01,
m=1, and yo =0.4.

0.8
0.6
=loaf
)
£
0.2
0OF
0.2 0.3 0.4 0.5
Re[w,"]
—-—n=0 -=wn=1 —e-n=2
Fig. 2. (color online) Scalar resonant frequencies of a

Kerr—Sen black hole as a function of a for e = 0.6, b = 0.01,
m=1,and yp =0.5.
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0.8
s
0.6 -
5’_; —a—— .
3 L
= s 8 s g
= N S S ) S}
Vi / n / Vi Vi
02| N X ~ ~ ~ ~
0.1 0.2 0.3 0.4
Re[w,"]
—-n=0 -w-n=1 —e-n=2
Fig. 3. (color online) Scalar resonant frequencies of a

Kerr—Sen black hole as a function of b for e =0.7, a = 0.3,
m=1, and uo = 0.6.

-0.8L . . .
05 10 15 20 25 30
Re[w,"]

—o-n=0 -®n=1 - n=2

Fig. 4. (color online) Scalar resonant frequencies of a
Kerr—Sen black hole as a function of m for e=1.0, a=0.2,
b=1,and yy=0.7.
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o7f **
0.6F
Eg 05F way
£ 04F N ) =
= N Q;/Z fQ QZQ \Q//Q' //{9 y ©
02F H\'\'\\.\\/f\j“

0.032 0.034 0.036 0.038 0.040 0.042 0.044
Refw,"]

|+n:0 —a—n=1 +n:2|

Fig. 5. (color online) Scalar resonant frequencies of a
Kerr—Sen black hole as a function of yy for e=0.1, a=0.1,
b=0.01,and m=1.

4.1 Massless scalar fields

The expression for the resonant frequencies can be
exactly solved for w, when we have a massless scalar
field. Thus, in the case where ug =0, the resonant fre-

quencies are given by

1.6}t
141
12}
1.0}
0.8

Im[w,®]

0.6
041

0.0320 0.0325 0.0330 0.0335 0.0340 0.0345
Re[w,"]

—o— 1,=0.1 8 4,=02 & 5,=03

Fig. 6.  (color online) Scalar resonant frequencies of a
Kerr—Sen black hole as a function of n for e=0.1, a=0.1,
b=0.01l,and m=1.

© :am—e{W—M@— \/m}
! 2M(NB-MP-a®—b+M)
N (n+1)\b-M?-a
DM(NB-MZ=a—b+M)

where the principal quantum number » is either a posit-
ive integer or zero.

The eigenvalues given by Eq. (54) are also not degen-
erate as that there is no dependence on the eigenvalue A4,,.
The massless scalar resonant frequencies, wj, are shown
in Table 3, where the units are given as multiples of the
total mass M.

(54

Table 3. Massless scalar resonant frequencies for a Kerr—Sen black
hole for ¢ =0.1, a=0.5, and m = 0. We focus on the first excited

mode n = 1.

b Re(wq) Im(wy)
0.00 0.00000 0.46410
0.01 0.00707 0.46326
0.04 0.01414 0.46053
0.09 0.02121 0.45520
0.16 0.02828 0.44554
0.25 0.03536 0.42705
0.36 0.04243 0.38432
0.49 0.04950 0.16462
0.64 —0.44309 0.48160

We present the massless scalar resonant frequencies
in Figs. 7, 8,9, 10, and 11 as a function of e, a, b, m, and
n, respectively, where the units are given as multiples of
the total mass M.

5 Conclusions

In this study, we have considered the interaction
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r— o —— O — o —@
02F
0.11 0.12 0.13 0.14 0.15
Re[o,V]
—-—n=0 —mn=1 e n=2
Fig. 7. (color online) The massless scalar resonant frequen-
cies of a Kerr-Sen black hole as a function of e for a =04,
b=00land m=1.
0.8 ~05 1o =0
a=Y>-0.6
a=0 1=07
061 -
S
S
E
0.2}
0F
0.20 025 030 035 040 045 0.50
Re[w,V]
—--n=0 -mn=1 e n=2
Fig. 8. (color online) The massless scalar resonant frequen-
cies of a Kerr-Sen black hole as a function of a for ¢ =0.6,
b=00land m=1.
0.8 1=0
O —————————o—
0.6
g = Yy <) SR
Soaf S S s 5§ & &
g / / / y y y
= R RSN 9 9
0.2} N - - - S
0.1 0.2 0.3 0.4
Re[w,"]
—o-n=0 = n=1 —n=2
Fig. 9. (color online) The massless scalar resonant frequen-

cies of a Kerr-Sen black hole as a function of b for e =0.7,
a=03and m=1.

between charged massive scalar fields and the Kerr—Sen
black hole. We solved the covariant Klein—Gordon equa-
tion and then analyzed some interesting physical phenom-
ena that correspond to the Hawking radiation spectrum
and the resonant frequencies. We also examined how
thermodynamics quantities such as entropy and free en-
ergy depend on the parameter b associated to the dilaton.

02}
E -02}
£ oaf
—0.6

-0.8L . . . . . \

0.5 1.0 1.5 2.0 2.5 3.0
Re[o,"]
—--n=0 —wn=1 e n=2
Fig. 10. (color online) The massless scalar resonant frequen-

cies of a Kerr-Sen black hole as a function of m for e = 1.0,
a=02andb=1.

151 n=>5 #=0
n=4
1.0} n=3
n=2

Im[w, V]

0.030 0.032 0.033 0.034 0.035
Re[w,"]
Fig. 11.
Kerr-Sen black hole as a function of n for e=0.1, a=0.1,
b=0.0land m=1.

(color online) The scalar resonant frequencies of a

The Hawking radiation spectrum was obtained from
the asymptotic behavior of the radial solution at the exter-
ior event horizon, where we have used the expansion in
the power series of the confluent Heun function. With re-
gard to the Hawking radiation, we obtained a black hole
radiation spectrum that resembles the one obtained in the
context of the Kerr—Newman black hole spacetime. All
others quantities such as the flux of particles, free energy,
and entropy preserve the similarity with the correspond-
ing results in Kerr—Newman spacetime.

We have obtained a general expression for the reson-
ant frequencies from the boundary conditions imposed to
the radial solution and studied the behavior of the oscilla-
tions and how fast they disappear. By using a numerical
method, we obtain some values for the resonant frequen-
cies as a function of the involved parameters. We also
analyzed the case of massless scalar particles.

As we can see from Figs. 1-6 for the massive case as
well from Figs. 7-11 for the massless case, the resonant
frequencies depend on the parameter that codifies the
presence of the dilaton field as well as on the physical
parameters such as mass, charge, and angular momentum.
We also emphasize how different are the resonant fre-
quencies for different modes, for example, the funda-
mental and the first and second excited modes.
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