Chinese Physics C Vol. 43, No. 3 (2019) 034103

Chiral phase structure of the sixteen meson states in the SU(3) Polyakov
linear-sigma model for finite temperature and chemical potential in
a strong magnetic field

Abdel Nasser Tawfik"*"  Abdel Magied Diab™  M.T. Hussein"”
'Nile University, Juhayna sq. of 26th-July-Corridor, 16453 Giza, Egypt
*Frankfurt Institute for Advanced Studies, Ruth Moufang Str. 1, 60438 Frankfurt, Germany and World Laboratory for Cosmology And Particle Phys-
ics (WLCAPP), 11571 Cairo, Egypt
3Egyptian Center for Theoretical Physics (ECTP), MTI University, 11571 Cairo, Egypt and World Laboratory for Cosmology And Particle Physics
(WLCAPP), 11571 Cairo, Egypt
4Physics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt

)

Abstract: In characterizing the chiral phase-structure of pseudoscalar (JP=077), scalar (J” =0%"), vector
(JP¢ = 177) and axial-vector (JP¢ = 1**t) meson states and their dependence on temperature, chemical potential, and
magnetic field, we utilize the SU(3) Polyakov linear-sigma model (PLSM) in the mean-field approximation. We first
determine the chiral (non)strange quark condensates, o; and o, and the corresponding deconfinement order paramet-
ers, ¢ and ¢*, in thermal and dense (finite chemical potential) medium and finite magnetic field. The temperature and
the chemical potential characteristics of nonet meson states normalized to the lowest bosonic Matsubara frequency
are analyzed. We note that all normalized meson masses become temperature independent at different critical temper-
atures. We observe that the chiral and deconfinement phase transitions are shifted to lower quasicritical temperatures
with increasing chemical potential and magnetic field. Thus, we conclude that the magnetic field seems to have al-
most the same effect as the chemical potential, especially on accelerating the phase transition, i.e. inverse magnetic
catalysis. We also find that increasing the chemical potential enhances the mass degeneracy of the various meson
masses, while increasing the magnetic field seems to reduce the critical chemical potential, at which the chiral phase
transition takes place. Our mass spectrum calculations agree well with the recent PDG compilations and PNJL, lat-

tice QCD calculations, and QMD/UrQMD simulations.
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1 Introduction

Quantum Chromodynamics (QCD) predicts that the
hadron-quark phase transition, where the hadronic matter
goes through a partonic phase transition and generates a
new-state-of-matter, colored quark-gluon plasma (QGP),
takes place under extreme conditions of density (large
chemical potential4)) and temperature. Accordingly, at
high temperature and/or chemical potential, the confined
hadrons are conjectured to dissolve into free colored
quarks and gluons. Various heavy-ion experiments aim at
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characterizing the properties of this new-state-of-matter,
for instance, STAR at the Relativistic Heavy-lon Col-
lider (RHIC) at BNL, ALICE at the Large Hadron Col-
lider (LHC) at CERN, the future CBM at the Facility for
Antiproton and Ion Research (FAIR) at GSI, and the fu-
ture MPD at the Nuclotron based Ion Collider fAcility
(NICA) at JINR.

The explicit chiral-symmetry breaking in QCD is as-
sumed to contribute to the masses of the elementary
particles [2-4]. In QCD-like models, which incorporate
some features of QCD so that they are able to give an ap-
proximate picture of what the first-principle lattice QCD
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4) In cosmological context, low baryon density used to be related to low baryon chemical potential. But both quantities are apparently distinguishable, for instance,

the phase diagrams 7-u and T-p aren't the same [1].
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simulations can lead to, such as the Polyakov linear-
sigma model (PLSM), or the Polyakov quark-meson
(PQM) and the Polyakov Nambu-Jona Lasinio (PNJL)
models, some properties of the QCD meson sectors can
be studied numerically. In the present paper, we study the
chiral phase-structure of sixteen meson states in a finite
magnetic field and its dependence on temperature and
chemical potential. To characterize the dependence of
various meson masses for pseudoscalars (J7¢ =07"), scal-
ars (JP€=0%), vectors (JP°=1"") and axial-vectors
(JP¢ =1*"") on temperature, chemical potential and mag-
netic field, we utilize SU(3) PLSM in the mean-field ap-
proximation. The magnetic field is a significant ingredi-
ent to be taken into consideration, as it can be as high as
10" Gauss in relativistic heavy-ion collisions. It is also
conjectured that the deconfinement phase transition gives
considerable contributions to the meson mass spectra. We
shall discuss the conditions under which certain meson
states dissolve into free colored quarks and gluons, and
which temperature and chemical potential would be able
to modify the chiral phase-structure of each of the nonet
(sixteen) meson states.

It is not only the peripheral heavy-ion collisions that
generate enormous magnetic fields, but also the central
ones as well. Due to the opposite direction of relativistic
charges (spectators), especially in non-central collisions
and/or due to local momentum imbalance of the parti-
cipants, a huge short lived magnetic field can be created.
At SPS, RHIC and LHC energies, for instance, the mean
values of such magnetic field have been estimated as
~0.1, ~1, and ~15m2, respectively [5-7], where m2 ~ 10'8
Gauss. It should be emphasized that such estimations
were made with the Ultrarelativistic Quantum Molecular
Dynamics model (UrQMD) for various impact paramet-
ers, 1.e. different centralities.

It is noteworthy to highlight the remarkable influence
of the Polyakov-loop potentials on scalar and pseudoscal-
ar meson sectors. With the in (ex) clusion of the
Polyakov-loop potentials in the LSM Lagrangian, the
chiral phase-structure of the nonet meson states for finite
temperatures has been evaluated [8]. The same study was
carried out with(out) axial anomaly term [9, 10]. A sys-
tematic study of the thermal (temperature) and dense
(chemical potential) influence on the chiral phase-struc-
tures of the nonet (sixteen) meson states with (out) axial
anomaly term, and also with in (ex) clusion of the
Polyakov-loop potentials, was published in [11]. For the
sake of completeness, we recall that for finite chemical
potential the SU(3) NJL model [12] and the SU(3) PNJL
model [13-15] have been applied to characterize the non-
et meson states as well.

The present work represents an extension of Ref. [11]
to a finite magnetic field. We present a systematic study
of the influence of the finite magnetic field, which is

likely to be present in high-energy collisions, and the pos-
sible modifications on the chiral phase-structure of vari-
ous (sixteen) mesonic states, including (pseudo) scalar
and (axial) vector meson sectors, as function of temperat-
ure and chemical potential in the presence of a finite
magnetic field. The temperature and chemical potential
dependence of the chiral nonstrange and strange quark
condensates, o; and o , and the corresponding decon-
finement order-parameters, ¢ and ¢*, which determine the
quark-hadron phase transitions in a finite magnetic field,
shall be characterized for finite magnetic fields. We then
investigate the various nonet meson states. Last but not
least, we estimate how the normalization of these meson
states relative to the lowest bosonic Matsubara frequency
behaves with temperature, chemical potential and mag-
netic field. This allows to approximately determine the
dissolving temperature and chemical potential for each
meson state in a varying magnetic field.

An extensive comparison of our calculations of the
meson nonets with the latest compilation of the Particle
Data Group (PDG), lattice QCD calculations, and
QMD/UrQMD simulations, shall be presented. It allows
not only to characterize the meson spectra in thermal and
dense medium, but also to describe their vacuum phe-
nomenology in finite magnetic fields. We conclude that
the results obtained are remarkably precise, especially for
some light mesons, if these are extrapolated to vanishing
temperatures.

The paper is organized as follows. We briefly de-
scribe the chiral LSM Lagrangian with three quark fla-
vors in Section 2.1. We then give a short reminder of the
PLSM model in the mean-field approximation in Section
2.2. In a vanishing or a finite magnetic field, the depend-
ence of chiral nonstrange and strange quark condensates,
and the corresponding deconfinement order-parameters
characterizing the quark-hadron phase transition, on tem-
perature and chemical potential, calculated form the
SU(3) PLSM model, is presented in Section 3.1. The
characterization of the magnetic catalysis is discussed as
well. The chiral phase-structure of the various meson
states in a finite magnetic field is outlined in Section 3.2.
The temperature dependence of the chiral phase-structure
of the sixteen meson states in a finite magnetic field is
analyzed in Section 3.2.1. The chemical potential depend-
ence is introduced in Section 3.2.2. Section 3.2.3 is de-
voted to the temperature dependence of these meson
states normalized to the lowest Matsubara frequency. The
conclusions are given in Section 4.

2 A short reminder of the SU(3) Polyakov lin-
ear-sigma model

To study QCD thermodynamics and characterize the
various nonet mesons for finite temperatures and chemic-
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al potentials, the linear-sigma model shall be utilized as
an effective QCD-like model. In this section, we briefly
describe the chiral phase-structure of the LSM Lagrangi-
an with three quark flavors Ny =3, which can be estab-
lished for fermionic and mesonic potentials. Concretely,
the structure of this Lagrangian provides the tools to in-
vestigate the chiral phase-structure of nonet meson states.
As we have done in a serious of previous publications, we
treat SU(3) PLSM by means of the mean-field approxim-
ation, despite its well-know constrains. This approach en-
ables to characterize the respective influence of finite
magnetic field on the quark-hadron phase transition, in
both thermal and dense medium. By a dense medium we
mean, even if it might not be exactly equivalent with, a fi-
nite chemical potential. The intention is to examine the
chiral phase-structure of the sixteen meson states. By do-
ing this, we are able to compare their mass spectra with
the experimental results, with the first-principle lattice
QCD calculations, and with the corresponding estima-
tions from other QCD-like models.

2.1 Lagrangian of the linear-sigma model

As introduced in previous sections, LSM seems: to
give a remarkably good description of various meson
states. With the increasing number of degrees of freedom,
the quark flavors Ny, the number of meson states that can

1
Lav=-7 Tr(LfW +wa) +Tr

+Tr(R,R*) Tr(R,R")],

be generated increase as well. The full LSM Lagrangian
in U(Ny) with the color degrees of freedom N. is defined
as Lenirat = L + Ly, 1.€. fermionic and mesonic sectors. In
other words

e the first term represents quark (g) and antiquark
fields (g) [11],

Lf:El[i@_gTa(o—a+i75ﬂa+7§V§+7475Ag)]q’ (1)

where g is the Yukawa coupling constant and ¢ is an ad-
ditional Lorentz index [16]

e the second term gives the mesonic Lagrangian,
which consists of the various contributions of the nonet
states, interactions and possible anomalies

Lin=1 Lsp+Lya+Linc+ Ly, 2

where Lgp stands for scalar (J7¢ = 0™") and pseudoscalar
(JP¢ =07%), while Lay represent vector (JP°=1"") and
axial-vector (J7¢ =1*") mesons. Ly, represents interac-
tions that take place in the system of interest. The last
term-is called an anomaly term U(1)4. For more details
about the mesonic Lagrangian, interested readers are
kindly advised to consult Refs. [11, 17-24]. Further de-
tails about U(Ny), X U(Ny), can be obtained from [17-24]

Lsp =Tr[(D"®) (D' ®) - m* D' ®| - 4, [Tr(@ @)

— L, Tr(@' @) + Tr[H(® + D)), 3)
m% 2, 2 82
[7 + A] (Lﬂ + R#)] + i;(Tr{LW[L", L1} + Tr{R,, [R*, R} + g3 [ Tr(L, L, [* L")
+ Tr(Ry R R*R")] + ga [ Tr (L L L, L") + Tr(R,R*R,R" )1 + 5 Tr (L, L") Tr (R,R”) + g6l Tr(Ly, L) Tr(L, L")
4)
Lo = h—zl Tr(®'®) Tr(L: + R2) + by Te[|L, DI + |OR,[*] + 2h3 Tr(L, OR' 1), ®)
Ly, = c[Det(®) + Det(®")] + co[Det(®) — Det(®")]* + ¢ [Det(D) + Det(®") Tr[OD]. (6)

The complex matrices for scalar o, i.e. JFC =07,
pseudoscalar n,, i.e. JP€ =07*, vector V4, i.e. JPC=17"
and axial-vector A%, i.e. JPC =1*" meson states can be
constructed as

Mol

O =" Ty(oa+ing),
a=0

N2 -1

L= Tu(Vi+AD),
a=0
N-1

R =) To(Vi - A,
a=0

(7

The various generators are defined according to Ny. It
is obvious that the covariant derivative, D*® = HD—
ig1(L/®— DR), is to be associated with the degrees of

[
freedom for (pseudo-)scalar and (axial-)vector and
couples them through g, the coupling constant. For in-
stance, for Ny=3, the unitary matrices for SU(3),x
SU(3), can be obtained from Ref. [11], while T,, the gen-
erators of U(3) , can be expressed as T, =1,/2, with
a=0...8, and 1, are the Gell-Mann matrices.

Different PLSM parameters have been fixed in previ-
ous studies [8, 25]. It should be noted that these two mod-
els are inconsistent and so is any parameterization based
on them. The problem was solved in Ref. [4], where the
authors introduced C; combining various parameters,
Cr=ml+2 (0[2+a§). While C; can only be estimated
through parametrization, its individual parameters can
not. While both mg and A; were taken from Ref. [8], the
remaining ones have been determined (see Table 3 in
Ref. [25]).

034103-3



Chinese Physics C Vol. 43, No. 3 (2019) 034103

2.2 Polyakov linear-sigma model in the mean-field ap-

proximation

The LSM Lagrangian with Ny =3, which are coupled
to N, =3, can be written as £ = Lepira — U($,¢*,T). The
potential U(¢p,¢*,T) should be adjusted from recent lat-
tice QCD simulations. Accordingly, various LSM para-
meters can be determined. It should be noted that this
Lagrangian has a Z(3) center symmetry [26-29]. Through
the thermal expectation values of the color traced Wilson-
loop in the temporal direction, the dynamics of color
charges and gluons can be taken into consideration

¢ = (Tt P)/Ne, ¢ = (TrP")/N,. ®)
The Polyakov-loop potential U(¢p,¢*,T) canbe intro-
duced in the pure gauge limit as the temperature and
density dependent quantity. There are various proposals
how to do so.

In previous works, we have implemented the polyno-
mial potential [11, 30-32]. In the present work, we intro-
duce calculations based on an alternatively-improved ex-
tension to ¢ and ¢* [27, 29, 33], the logarithmic potential,
Urog(9,¢".T) —a(T) ,

T4 = ¢
+b(T)In[1-6¢"¢+4(¢" +¢") - 3(4"¢)]
©
where Ty isthe critical temperature for the deconfine-
ment phase-transition in the pure-gauge sector,

a(T) = ag+ay (To/T) +ax (To/T)* and b(T) = b3 (Ty/T)*,
(10)

The remaining parameters ag, a;, ap, and bz can be de-
termined by comparison with lattice QCD simulations.
These are listed in Table 2 in Ref. [34].

In thermal equilibrium, the mean-field approximation
of the Polyakov linear-sigma model can be implemented
in the grand-canonical partition function (Z) for finite
temperature (7) and finite chemical potential (us). Here,
the subscript f refers to the quark flavors. For finite
volume (V), the free energy reads ¥ = =7 -log[Z]/V. For
instance, for SU(3) PLSM,

F =Ulo,o0)+U@P,¢", T)+Qqy(T, s, B). (11)
The three terms (potentials) can be described as follows.

e The purely mesonic potential, the first term, stands
for the strange (o-s) and nonstrange (o) condensates, i.e.

2
m- . o 2 )
U(O'z,ffs)=—hszz—hs0's+7(0'z +0) - =00

2V2
A 21+ A A1+ A4
+7]0'120'§+( ‘8 2)0—;‘+( 14 2)03‘. (12)

e The Polyakov-loop potential, the second term, was
already detailed in Eq. (9).

e The quark and antiquark potential, the third term, is
obviously subject to important modifications in the finite

external magnetic field, and is the focus of the present
work,

19/1BT & =
Qqg(T,1, B)==2 ) é 2,260 f dp.
7 W5 0

X {ln

+In

_ Eprouy _ Epyrony _aEpyry
1+3(¢+¢*e T )e T oe T ]

1+ 3 (¢* + ¢e_ E[f,/TH‘j )e_ Eu,{rw + e_?’w ]} .
13)

Epy is the dispersion relation for each of the quark fla-
vors in a finite external magnetic field, B # 0

Epy< \Jp+m’+lq2n+1-DB, (14)

where o represents the spin quantum number, o = +5/2 ,
and my are the masses of quark flavors, which are dir-
ectly coupled to the corresponding sigma-fields,

Zs (15)
7
For the sake of completeness, we recall that the light and

strange condensates are determined from the partially
conserved axial-vector current (PCAC) relation [8],

1

\/E(sz Jo)- (16)
where f; and fx are pion and kaon decay constants, re-
spectively. The quantity 2 -6y, is related to the degener-
ate Landau levels v. We would like to highlight that the
quantity 2n+ 1 -0 can be replaced by a summation over
the Landau levels (v). In nonzero magnetic field (eB # 0)
but finite 7 and us, both the Landau quantization and
magnetic catalysis, where the magnetic field is assumed
to be oriented along the z-direction, have been implemen-
ted. The quantization number () is known as the Landau
quantum number. For details about Landau levels and
how they are occupied, interested readers are kindly ad-
vised to consult Ref. [35].

Regarding the fermionic vacuum term, let us now re-
view the status of its role in various QCD-like models. In
Ref. [36], it was concluded that the inclusion of the fer-
mionic vacuum term, commonly known as the no-sea ap-
proximation, seems to cause a second-order phase trans-
ition in the chiral limit. Accordingly, it was widely be-
lieved that its inclusion is accompanied with first or
second-order phase transition, depending on the baryon
chemical potential, but also on the choice of the coupling
constants [36]. For further investigation of its role, vari-
ous thermodynamic observables have been evaluated in
two different effective models, the NJL and quark-meson
(QM), or LSM model. To this end, the adiabatic trajector-
ies in the QM model are found to exhibit a kink at the
chiral phase transition, while in the NJL model, there is a
smooth transition everywhere [37]. In light of this, it was
suggested that the fermionic vacuum term can be dropped

o
m=go, ms=g

O_-l:fm (o
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from the QM model, similar to the approach utilized in
the present work, while in the NJL model, this term must
be included. This effect underlies a first-order phase
transition in the LSM model in the chiral limit, especially
when the fermionic vacuum fluctuations can be neg-
lected [38]. The direct method of removing the ultravi-
olet divergences is the one in which the fermionic vacu-
um term is included [39],

d3p
QYA 2NNy ) f ——E
“ T2y @m™

—NcNf 4 A+EA
:W Z (mf In
f

mg
where e = (A? +m))!/* and my is the flavor mass. Eq.
(13) gives the fermionic contributions to the medium in
finite magnetic field, Therefore, many authors consider
that the fermionic vacuum term has a negligible effect on
the PLSM results, which we also assume.

Coming back to our approach to PLSM and its mean
field approximation, we recall that the mean values of the
PLSM order parameters, such as the chiral condensates;
o and o, and deconfinement phase transitions, ¢ and ¢*,
are evaluated such that one minimizes the free energy #
in a finite volume (V) with respect to the corresponding
field, where o = &4, 05 = &, ¢ = ¢ and ¢* = ¢*,

oF _0F _O0F OF

(T‘—l_ oo _% - 0(]3* min
Their dependence on 7, u and eB can then be determined.
For a vanishing chemical potential (u =0), it is obvious
that the order parameters of the deconfinement phase
transitions, ¢ and ¢*, are identical, but at u # 0, they are
distinguishable. The PLSM free energy for a finite V, Eq.
(11), becomes complex. Therefore, the analysis of the
PLSM order parameters should be made by minimizing
the real part of the free energy, Re(F), at the saddle point.

—en [A2 + ei]), 17)

=0, (18)

3 Results

We study the dependence of the quark-hadron phase
transition on temperature and baryon chemical potential
in presence of a finite magnetic field. To this end, we first
estimate the respective influence of the magnetic field on
the various chiral condensates and on the deconfinement
order-parameters, Then, in the second part of this Section,
we estimate the chiral phase-structure of sixteen meson
states in a thermal and dense medium. By a dense medi-
um, we mean a medium with finite chemical potential.
Last but not least, we shall present as well the temperat-
ure and chemical potential dependence of the sixteen
meson states normalized to the lowest Matsubara fre-
quency.

3.1 Order parameters and magnetic catalysis

The chiral condensates (o and o) and the deconfine-
ment order-parameters (¢ and ¢*) are analyzed for a wide
range of temperatures, baryon chemical potentials, and
magnetic field strengths. The various PLSM parameters
are estimated for the vacuum mass sigma meson o = 800
MeV, where the vacuum nonstrange and strange chiral
condensates are o; =92.5 MeV and o5, =94.2 MeV, re-
spectively.

In Fig. 1, the temperature dependence of the different
order parameters are shown for different magnetic fields,
eB = m? (top panels) and eB = 10m2 (bottom panels), and
for different baryon chemical potentials, u=0 (solid
curves), 100 (dashed curves) and 200 MeV (dotted
curves). In the left-hand panels (a) and (c), the normal-
ized chiral condensates (o/0, and os/o) are depicted.
We note that the chiral condensates are slightly shifted to
lower critical temperatures when the baryon chemical po-
tential increases. In other words, the critical chiral tem-
perature (T,) decreases with the increase of the magnetic
field (eB), as well as with increasing u. The procedure
utilized in determining 7, is elaborated below. Such a be-
havior is known as the inverse magnetic catalysis. We
bear in mind that this kind of inverse magnetic catalysis
is related to the baryon chemical potential. This might be
seen as a novel discovery to be credited to the present
work. Furthermore, we conclude that the effect of the
strong magnetic field is in the same direction as the bary-
on chemical potential, especially concerning the start of
the phase transition, i.e. that the phase transition takes
place at lower temperatures. In other words, similar to the
inverse magnetic catalysis corresponding to temperature,
we also observe an inverse magnetic catalysis related to
the magnetic field.

Right-hand panels (b) and (d) show the Polyakov-
loop order parameters (¢ and its conjugate ¢*)as func-
tion of temperature for the same values of baryon chemic-
al potential and magnetic field as in the left-hand panels.
It is obvious that for u =0 (solid curves), ¢ = ¢, i.e. the
order parameters are indistinguishable. However, they be-
come different for finite u, u =100 MeV (dashed curves)
and ¢ =200 MeV (dotted curves). The effects of the mag-
netic field are obvious. We observe that the deconfine-
ment critical temperature (T) is shifted to lower values as
the magnetic field increases, and also as the baryon
chemical potential increases. This is similar to the left-
hand panels. On the other hand, we conclude that ¢ and
¢* have different dependence on temperature. While ¢ in-
creases as the magnetic field increases, and as the baryon
chemical potential increases, we find that ¢* decreases in
both cases. Accordingly, the magnetic catalysis related to
temperature is respectively a direct or an inverse effect.
Again, the determination of T, is discussed below.
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Figure 2 illustrates the temperature dependence of the
normalized chiral quark-condensates (a) and deconfine-
ment order parameters (b) for different magnetic fields,
eB=0 (solid curves), 0.1 (dashed curves), 0.2 (dotted
curves) and 0.4 GeV~ (dot-dashed curves), at vanishing
chemical potential (u = 0). Relative to the previous figure,
this one presents a systematic study of the influence of
magnetic fields. In the left-hand panel (a), we find that
the critical chiral temperature deceases with increasing
magnetic field. This means that the phase transition,
which is a crossover, becomes slightly sharper with in-
creasing magnetic field. In the right-hand panel (b), the
temperature dependence of the deconfinement order para-
meters is depicted for a vanishing baryon chemical poten-
tial, i.e. ¢ =¢* but different magnetic field strengths,

AE00MeV ——
ol =100 MeV - - - |
075
<
S 050} ooy
025
(@)
0 X N N B il s
0 50 100 150 200250 300 350
T (MeV)
) it —
= eV - - -
10— =200 MeV
0.75}
S
5050} ailay
025}
(© )

O N N N N N n
0 50 100 150 200 250 300 350
T (MeV)

Fig. 1.

eB=0 (solid curves), 0.1 (dashed curves), 0.2 (dotted
curves) and 0.4 GeV’ (dot-dashed curves). It is obvious
that the critical deconfinement temperature (7,) de-
creases very slightly as the magnetic field increases.

In both figures, we assure that the maximum Landau
levels are fully occupied with quark states. The details
about the Landau quantization as a crucial consequence
of the magnetic field, and how the corresponding levels
are occupied with quark states, can be obtained from
Refs. [35, 40].

Furthermore, we have calculated the chiral condens-
ates (o and o) and the deconfinement order-parameters
(¢ and ¢*) and their dependence on the baryon chemical
potential (u) for different temperatures and magnetic field
strengths. This is illustrated in Fig. 3, for temperatures
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(color online) Left-hand panels (a) and (c) show the normalized chiral-condensate with respect to the vacuum value as func-

tion of temperature. Right-hand panels (b) and (d) show the expectation value of the Polyakov-loop fields (¢ and ¢*) as function of
temperature. The top panels present the results for magnetic field eB = m2, while the bottom panels are for eB = 10m2. The calcula-
tions are performed for different baryon chemical potentials; u = 0 (solid curves), 100 (dashed curves), 200 MeV (dotted curves).
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(color online) Left-hand panel: the normalized chiral condensate as function of temperature for a vanishing baryon chemical

potential x4 = 0 but different magnetic fields, eB =0 (solid curves), 0.1 (dashed curves), 0.2 (dotted curves) and 0.4 GeV’ (dot-dashed
curves). Right-hand panel: the same as in the left-hand panel but for the deconfinement order parameters ¢ and ¢*.
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(color online) Left-hand panels (a) and (c) show the chiral condensates (o; and o) normalized to the vacuum value as func-

tion of baryon chemical potential for different values of magnetic fields, eB = 1 (solid curves) 10 (dashed curves), 15 (dotted curves),
20 (dot dashed curves), and 25m2 (double dotted curves). Right-hand panels (b) and (d) show the same as in the left-hand panels but
for the expectation value of the Polyakov-loop potentials, i.e.’deconfinement order parameters (¢ and ¢*). Top panels show the res-

ults for T = 50 MeV, and bottom panels for 7 = 100 MeV.

T =50 MeV (top panels) and T = 100 MeV (bottom pan-
els). In the left-hand panels (a) and‘(c), the density de-
pendence of the chiral condensates‘is given as function of
different magnetic field strengths, eB = 1 (solid curves) 10
(dashed curves), 15 (dotted curves), 20 (dot dashed
curves), and 25m2 (double dotted curves). We observe
that increasing the temperature causes a rapid decrease in
the chiral condensates around the chiral phase transition,
similar to that observed in a previous study with PLSM
without the magnetic field [11], and in the previous two
figures as well. Such a decrease is likely related to a rap-
id crossover.

We observe that increasing the magnetic field acceler-
ates the rapid decrease in the chiral phase-structure. This
leads to a decrease in the corresponding critical chemical
potential, which is determined in a similar manner as the
critical chiral temperature. Increasing the magnetic field
tends to accelerate the phase transition, i.e. to accelerate
the formation of a metastable phase characterizing the re-
gion of crossover. This phenomenon is known as magnet-
ic catalysis, and is actually an inverse one.

There is a gap difference between the light and
strange chiral condensates at high densities. This can be
understood because of the inclusion of the anomaly term
in Eq. (12), which was discussed in Section 2.2, and is
known as the ¢ term. The resulting fit parameters are ac-
cordingly modified [8, 11]. This was conjectured as an
evidence of the numerical estimation of the chiral con-

densates. The difference between o; and o was also ob-
served in the previous two figures.

The right-hand panels (b) and (d) show the depend-
ence of the deconfinement order parameter on the baryon
chemical potential for temperatures 7 =50 (top panel)
and 7 =100 MeV (bottom panel), and fixed magnetic
field strengths eB =1 (solid curves) 10 (dashed curves),
15 (dotted curves), 20 (dot dashed curves), and 25m2
(double dotted curves). The increase in temperature in-
creases the deconfinement order parameters for a larger
baryon chemical potential.

It is obvious that the slope of ¢ and ¢* with respect to
u can be approximately estimated. We observe that the
magnetic field decreases both slopes, i.e. increases the
corresponding critical chemical potentials, while increas-
ing the temperature increases the slopes and thus de-
creases the corresponding critical temperatures. Both
thermal and magnetic effects of the hadronic medium on
the evolution of Polyakov-loop parameters seem to be
very smooth.

In light of our study of the phase structure of PLSM
for finite 7, u, and eB, we can now speculate about the
three-dimensional QCD phase-diagram. This was already
analyzed in great detail in Ref. [35, 40], where the influ-
ence of a finite magnetic field on the QCD phase-dia-
gram, i.e. temperature vs. baryon chemical potential, was
analyzed. Interested readers are kindly advised to consult
Refs. [35, 40], where T-eB, u-eB, and T-u QCD phase-
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diagrams are shown. The three-dimensional phase-dia-
gram was depicted as well in [35, 40].

In the present work, we concentrate on a detailed ver-
sion of the 7T-eB phase-diagram, Fig. 4. We distinguish
between the critical chiral and critical deconfinement
temperatures. Also, we confront our calculations to the
recent 2 + 1 lattice QCD results [41, 42] , and observe ex-
cellent agreement.

200 : :
T.: Deconfinement PT LQCD1 —*®
180L . . i LQCD2
]
S 160'% $ 4 N
Q
2 .‘1’ +
= 140 :
T,: Chiral PT o .({3
120 +
RHIC LHC
100 - - - - -
0 0.1 0.2 0.3 0.4 0.5 0.6
B (GeV?)
Fig. 4. (color online) Dependence of the critical chiral and

critical deconfinement temperatures on a finite magnetic
field determined from PLSM (closed symbols). The results
are compared to the recent 2 +1 lattice QCD_simulations
[curve (deconfinement) and open symbols (chiral)] [41, 42].
The vertical bands refer to the estimated averaged magnetic
field at RHIC and LHC energies.

Figure 4 illustrates our PLSM. estimations of the de-
pendence of the critical chiral and critical deconfinement
temperatures, T, and T, on the finite magnetic field. Both
chiral (solid circles) and deconfinement (solid rectangles)
calculations are confronted to the recent 2 + 1 lattice QCD
simulations [41, 42]. The open symbols stand for the lat-
tice estimations for T, which are determined at the in-
flection point of the normalized entropy, labeled as
LQCDI [42]. The curved band represents the lattice es-
timations of the critical deconfinement temperature (7)
at the inflection point of the strange quark-number sus-
ceptibility, labeled as LQCD2 [41].

We recall that there are at least two different methods
that can be utilized to determine the critical temperature.
In the first one, T, is calculated using the thermodynamic
quantity s/T>, where s is the entropy density. The second
one determines 7. as the position where the strange
quark-number susceptibility reaches a maximum. It is
clear that the PLSM results are in excellent agreement
with both lattice QCD predictions [41, 42]. In light of this
study, we conclude that both PLSM and lattice QCD sim-
ulations clearly indicate that the two types of critical tem-
peratures (chiral and deconfinement) decrease with in-
creasing eB, i.e. show the inverse magnetic catalysis.

A few remarks concerning the magnetic catalysis are
in order. In Eq. (11), the first term, U(o, o), refers to the

contribution of the valence quarks, the second term,
[U(p,¢*,T)] gives the gluonic potential contribution,
while the last term [Qg,(T,u, B)] represents the contribu-
tion of the sea quarks. It is well-known that the physical
mechanism for magnetic catalysis relies on a competition
between valence and sea quarks [43-45]. The mesonic po-
tential has a remarkable effect at very low temperature
[30]. In our calculations, we noted that the small value of
U(oy,04) leads to an increase in the contribution of the
sea quarks. Thus, applying a finite magnetic field results
in the suppression of the chiral condensates relevant for
restoration of chiral symmetry breaking. This would ex-
plain the "inverse magnetic catalysis", which is character-
ized by a decrease in T, with increasing magnetic field, as
illustrated in Fig. 4, where the critical temperatures of
both types of phase transitions decrease with increasing
magnetic field. It should be noted that this phenomenon is
also observed in the lattice QCD simulations [41, 42].

It is noteworthy to recall that Ref. [46] reported an
opposite results, i.e. a direct magnetic catalysis. The first
term in the free energy, Eq. (11), U(oy,07), refers to the
contribution of the valance quarks. In a previous work
[30], we have analyzed the temperature dependence of
this specific potential for a vanishing chemical potential.
We found that it has a small effect at high temperatures.
However, it plays an important role in assuring spontan-
eous chiral symmetry breaking. PLSM describes the
quark-hadron phase structure, where the valence and sea
quarks are simultaneously implemented, Eq. (11). We
propose that the physical mechanism for magnetic cata-
lysis relies on an interplay between the contributions of
sea and valance quarks [43, 45]. We have observed that
the magnetic field increasingly suppresses the chiral con-
densates. Thus, the restoration of chiral symmetry break-
ing takes place at lower temperatures. Although it is un-
likely that the number of the quark flavors alone is suffi-
cient to explain the inverse or usual magnetic catalysis,
we emphasize that our calculations assume 2 + 1 quarks
flavors. For the sake of completeness, we intend in a fu-
ture work to investigate the magnetic catalysis in SU(4)
PLSM, as well.

3.2 Chiral phase-structure of meson states in a finite

magnetic field

In a previous work, sixteen meson states in thermal
and dense medium were studied with SU(3) PLSM [11]
for a vanishing magnetic field. For a finite magnetic field,
an estimation of the magnetic effects on four meson states
was presented in Ref. [31]. In order to conduct a system-
atic study of the effects of the magnetic field strength on
nonet (sixteen) meson states, the chiral phase-structure of
each meson-state is analyzed depending on temperature,
baryon chemical potential and finite magnetic field.

e We start with an approximate range for the magnet-
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ic field strength that may be created in heavy-ion colli-
sions at RHIC and LHC energies [5-7], eB = 1 -25m2.

e We then construct the temperature dependence of
all meson states corresponding to the lowest Matsubara
frequency.

e Last but not least, the chiral phase-structure of the
meson states is then given in a wide range of baryon
chemical potentials.

In quantum field theory, the hadron mass can be de-
termined from the second derivative of the equation of
motion relative to the hadron field of interest. The free
energy F(7,u,18,6) apparently encodes details of the
equation of motion, where 8 represents the correspond-
ing meson field. Assuming that the contribution of the
quark-antiquark potential to the Lagrangian vanishes in
vacuum, the meson potential determines the mass matrix,
given as

2 _ 62?(71’/1’63’[3)

bab BiadBiv i
where i stands for (pseudo)scalar and (axial)vector
mesons, and a and b are integers in between 0 and 8.
Equation (19) can be split into two different terms.

e The first one is related to vacuum, where the meson
masses are derived from the nonstrange (o) and strange
(o) sigma fields. More details about the estimation of
masses in vacuum are given in Appendix A. In this term,
the effect of the magnetic field requires numerical estima-
tions for nonstrange and strange sigma-fields.

e The in-medium term, in which the magnetic field is
included, reads

lg71BT < *

2

m,.yabvaZ—(zﬂ)2 > @=60) fo dp.
7 =0

(19)

2 2
1 ) e My )
X — 3 + - p —
2Es, [(nq,f,B nq,f,B)(mf,ab 263,
2 2
m, m
7. fb
s g .
(bg.r.5+ba.r5)| g, T (20)

where v, =2N,. This expression gives the meson-mass
modifications, which can be estimated from PLSM, Eq.
(19), and the diagonalization of the resulting quark-mass
matrix. Details about other quantities in Eq. (20) can be
obtained in Ref. [9, 11]:

- The quark mass derivative with respect to the meson
fields (1;,); mi.’a = (9m]26/8/l,-,a.

- The quark mass with respect to meson fields
(/li’aa/li’b), miab = Gm}/aﬂi,aﬁﬂi,b.

- Correspondingly, the  antiquark
bq,f,B(T, eB,uf) = bq’f’B(T, eB, —/lf), where

bq,f,B(T, eB,uf) = nq,f,B(T, eB,,uf)(l - nq,f,B(T, eB,uf)).
1)

quark

function

- The normalization factors for the

(bg.r =3y r)* —corn) and antiquark read
ba.r8 = 3(ng,1.8)° —cq 1B,

e EulT 4 2@ e2EulT 4 e=3Eu T

- 22
b T 3(¢ + e Eur/T)eEuslT 4 e=3Eu /T’ (22)
(D*e—Eg.r/T + 2(1)6—2Ew/T + e_3E?/~f/T 23

Ma.r5 = 1+ 3(¢* + ¢e_El7.//T)e_E[,,//T + e—3E(7.//T ’ ( )

‘ B e EirlT 4 4@*e2Eur/T 4 3¢-3Eus/T (24)
Lq,f’B B 1 + 3(¢ e ¢*6_Eq»//T)e_E(,_//T + C_3E‘7~//T ’

O e EilT 4 APe2EurlT 4 3¢-3Eu/T
(25)

Crrp= .
.18 1+3(¢" + ¢e*Eq.//T)e*Ew/T +e3E,T

- The quark -and antiquark dispersion relations,
E; ¢(T,eB,pn) and E, ¢(T,eB,—u), are equivalent to Ep s in
Eq. (14).

It should noted that due to the mixing between the
(pseudo)scalar-and (axial)vector sectors through the cov-
ariant derivative, the tree-level expressions of the pseudo-
scalars and some scalars are not mass eigenstates. When
the corresponding wave functions are renormalized to the
constants Z, such a mixing can be resolved. Details can
be found in Ref. [25].

3.2.1 Dependence of meson states on temperature

Figure 5 shows the (pseudo)scalar and (axial)vector
meson states with U(1)4-anomaly as function of temper-
ature for a fixed magnetic field strength and fixed baryon
chemical potential. The left-hand panels give the
[29(980),0°(800)] scalar and [*(957),7(134)] pseudoscalar
states, while the scalar [ fp(1200),x(1425)] and pseudoscal-
ar [n(547),K(497)] meson states are presented in the
middle panels. The right-hand panels illustrate the vector
[0(775),K*(891),w(782),¢(1019)] and axial vector
[a1(1030),f1(1281),K’{(1270),f;‘(1420)] meson states. The
solid curves represent the results for eB = m2. The results
for 4 =0.0 are depicted in the top panels. The middle and
bottom panels show the calculations for u = 100 MeV and
u =200 MeV, respectively. The results for eB=m? are
given as dashed curves. To distinguish between such
curves, one should note that the curves corresponding to
one meson state are usually bundled at low temperatures.
At very high temperatures, many, if not all, curves ap-
proach asymptotic limits. In the left-hand panels, we ob-
serve that increasing magnetic field slightly reduces the
meson masses, especially at the critical temperatures. In
the middle and right-hand panels, the opposite is ob-
tained, with one exception for Kaons. This might be a
subject of an experimental study, especially in the future
facilities such as the Facility for Antiproton and Ion Re-
search (FAIR) and the Nuclotron-based Ion Collider
fAcility (NICA).

The mass gap between the various meson states can
be estimated from the bosonic thermal contributions. The
masses of bosons are given as function of pure sigma
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Fig. 5. (color online) The temperature dependence of (pseduo)scalar and (axial)vector meson states calculated for finite magnetic

fields, eB =m2 (solid curves) and eB = 10m2 (dotted curve), at different baryon chemical potentials, 4 =0 MeV (top panels), u = 100

MeV (middle panels) and x = 200 MeV_(bottom panels).

fields, the nonstrange (o) and the strange (o). At low
temperatures, the bosonic thermal contributions are dom-
inant and become stable and finite relative to the corres-
ponding vacuum value of the meson state, until they
reach the chiral temperature (7,) related to the given
meson state. At high temperatures, the fermionic (quark)
thermal contributions complete the thermal behavior of
these states. As they increase with temperature, this leads
to degenerate meson masses. It is obvious that the effects
of the fermionic (quark) thermal contributions are negli-
gible at low temperatures.

As depicted in Fig. 5, the effects of a finite magnetic
field on the thermal contributions of the meson states can
be divided into three regions.

e The first region is dominated by the bosonic
thermal contributions, and the magnetic field remains in-
effective until the second region takes place.

e In the second region, beyond the chiral phase-trans-
ition of a given meson state, the influence of the magnet-
ic field becomes obvious. We observe that the increasing
magnetic field accelerates the chiral phase-transition of a
given meson. By accelerating, we mean that the phase

transition takes place at lower temperatures or chemical
potentials. As a result, the chiral critical temperature de-
creases with increasing magnetic field strength.

e The last (third) region represents the fermionic
thermal contributions.

We conclude that the magnetic field has an evident
effect on quarks and apparently accelerates and sharpens
the quark-hadron phase transition.

We observe that at temperatures exceeding the critic-
al values (corresponding to each meson state), the meson
masses become degenerate. This can be understood as
due to the effect of fermionic fluctuations on chiral sym-
metry restoration [8], especially on the strange condens-
ate (o). Such an effect seems to melt the nonstrange con-
densate (o) faster than the nonstrange one (o), Fig. 1. At
very high temperatures, the mass gap between mesons
seems to disappear due to the melting of the strange con-
densate (o-5). This mass gap appears again at low temper-
atures, where the nonstrange condensate remains finite.
At temperatures higher than critical, only the strange con-
densate remains finite. These thermal effects are strongly
related to the degenerate meson masses.
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Also, Fig. 5 shows that the o, 7, ap, and n* meson
states become degenerate through a first-order phase
transition and apparently keep this state at higher temper-
atures, assuring a completion of the chiral symmetry res-
toration. The middle panels depict the x meson state and
illustrates that it reduces to the n and K meson states
through a first-order phase transition. f; is degenerate at a
higher temperature as well through a first-order phase
transition. In the right-hand panels, the meson states f,
¢, ai, fi, p, and w become degenerate through chiral
phase-transitions, whereas K* and «* become coincident
at very high temperatures.

Increasing the baryon chemical potential influences
the behavior of the thermal contributions of different
meson states as well. We find that the increase of the ba-
ryon chemical potential (from top to bottom panels) en-
hances various degenerate meson masses. For example,
the o and 7 states degenerate at the chiral temperature
T, ~191.5MeV and u = 0 MeV. But for u = 100 MeV, the
critical temperature drops to ~ 186.5 MeV , and for u=0
MeV, it decreases to ~ 178.7 MeV. Thus, we conclude
that the chiral temperature associated to the different
meson states decreases with increasing baryon chemical
potential. This refers to a remarkable in-medium effect
that could be verified in the future facilities with high-
density heavy-ion collision experiments.

Our goal is not only the characterization of the‘ meson
spectra in thermal and dense medium, but also the de-

Table 1.

scription of their vacuum phenomenology in a finite mag-
netic field. In Table 1, an extensive comparison is given
of the results for different scalar and vector meson (non-
ets) from various effective models, PLSM (present work)
and PNJL [12-15, 47] , and from the very recent compila-
tion of PDG [48], lattice QCD calculations [49, 50] and
QMD/UrQMD simulations [51]. We conclude that our
PLSM calculations are remarkably precise, especially for
some light mesons at a vanishing temperature. They are
comparable with measurements and lattice calculations,
as shall be elaborated in the following section.

Only pseudoscalar and vector meson sectors are avail-
able from HotQCD, [49] and PACSCS collaborations
[50]. It is obvious-that our estimations for meson masses
agree well with previous calculations [8, 9, 11, 25] for
mixing strange with nonstrange scalar states, where it was
reported that one gets various states below 1 GeV and
one above 1 GeV [25]. The agreement between PLSM
and the available lattice-calculations is excellent.

3.2.2° Dependence of meson states on baryon chemical
potential

Figure 6 shows the dependence of scalar and vector
meson states (labeled curves) on the baryon chemical po-
tentials in the presence of the U(1), anomaly, for magnet-
ic fields eB = 15m, (solid curves) and eB = 20m,, (dashed
curves), and temperatures 7 =50 (top panel), and 100
MeV (bottom panel). As discussed in previous sections,
the nonstrange (o) and strange quark (o) chiral condens-

Comparison of the (pseudo)scalar and (axial)vector meson states obtained in the present work (PLSM), and the corresponding results from

PNJL [13-15], the latest compilation of PDG [48], QMD/UrQMD [51] and lattice QCD calculations [49, 50].

lattice QCD calculations

sector meson states PDG [48] UrQMD model [51] present work  PNJL model [12-15, 47]
Hot QCD[49] PACS-CS [50]

aog ap(980+20) 984.7 1015.73 837

K K (1425+50) 1429 1115 1013

scalar JPC = 0**

o 400-1200 800 700

fo f0(1281.0+0.5) 1200 - 1500 1102.8 1169

n 79(134.9770+0.0005) 139.57 150.4 126 134+6 135.4+6.2
K K0 (497.611+0.013) 493.68 509 490 422.6x11.3 498+22

pseudoscalar J°€ = 0~*

n n(547.862+0.17) 517.85 553 505 579+7.3 688+32
n 17 (957.78+0.06) 957.78 949.7 949

Y 0(775.26+0.25) 771.1 745 764.08 756.2+36 597+86
wx w(782.65+0.12) 782.57 745 764.08 884+18 861+23

vector JP€ =17

K* K*(891.76+0.25) 891.66 894 899.96 1005493 1010.2+77
Wy #(1019.461+0.016) 1019.45 1005 1025.79

ai a1 (1230 +£40) 1230 980 1171.78
Six £1(1281.9+0.5) 1281.9 980 1173.78

axial-vector J¥€ = 1++
K} K1 (1272+7) 1273 1135 1035.21
fiy fl/(1426.44_r71.30.9) 1512 1315 1531.55
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ates strongly depend on the temperature and baryon
chemical potential. The mass gap which distinguishes
between the meson states results from dense bosonic con-
tributions. Such contributions remain independent on the
baryon chemical potential until they reach the Fermi sur-
face [11, 52]. The masses are then liberated through a
first-order phase transition. To assure that the Polyakov-
loop potentials include the deconfinement phase trans-
ition in LSM, the dynamics of color charges was in-
cluded as a new type of interaction. Apparently, the
meson masses remain degenerate through the deconfine-
ment phase transition. When comparing these results with
our previous ones [11], we conclude that the deconfine-
ment phase transition in the present work, where a finite
magnetic field is included, seems to become sharper and
faster, i.e. the region of u within which the masses of the
meson states decrease, indicating a rapid change in the
underlying dynamics and degrees of freedom, becomes
narrower as the magnetic field is increased. This finding
could be a subject of a future experimental verification.

Another finding of the present work is that for a fixed
magnetic field, the finite baryon chemical potential is
conjectured to contribute through baryon density tothe
masses of various meson states, and is dominant in three
regions:

e The first region is characterized by low p, where the
gap difference between the meson masses seems to ori-
ginate in dense bosonic contributions: These are obtained
from the mesonic Lagrangian of LSM.

e The second region appears when the meson states
undergo a chiral phase-transition from confined hadron

phase to parton phase, where quarks and gluons domin-
ate the underlying degrees of freedom.

e The third region is characterized by large u, where
the hadrons are conjectured to dissolve into their constitu-
ent free quarks and gluons.

As was obtained in the study of the temperature de-
pendence, the dependence of various meson masses on u
is accompanied by a decrease of the bosonic contribu-
tions to the medium density, which become negligible at
very large baryon chemical potentials. In this limit, the
dense fermionic contributions become dominant. Further-
more, the latter lead to mass degeneration, which takes
place through dense; fermionic contributions. Accord-
ingly, the meson states, if they pass through the phase
transition as bound hadron states or survive the critical
density (i) at which the phase transition takes place,
rely on dense fermonic contributions to overcome the en-
ergy gap of the Fermi surfaces. The latter differs from
one meson state to another. With increasing u, the bound
meson states are assumed to be free and entirely conver-
ted into deconfinment (partonic) phase [11, 52].

In the middle panels of Fig. 6, we note that the meson
masses reduce in the first-order phase transition. Con-
cretely, the mass of the « state reduces to the masses of K
and 7 states at uc ~ 350 MeV. The temperature is fixed
at 50 MeV. It seems that the fy meson state has a stronger
Fermi surface because of the strange quarks. The mass of
this state seems to survive until u ~ 500 MeV. At T = 100
MeV (bottom panel), the first-order phase transition
seems to persist for small u. The mass of x reduces to the
masses of K and 7 states at ucq ~ 298 MeV for the mag-

1500 1600
16008 15 m2, —— f < B=15m2, —
B=20m> 1200 1400
— 1200 s -
3 / s 900 3 1200
2 800 -y S w0 2
= ~7 = = 1000
40T, (a) T = 50.0 MeV 300 (b) T = 50.0 (MeV) 200
00 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
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1200 = _
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Fig. 6. (color online) Dependence of the masses of (pseudo)scalar and (axial)vector meson states on the baryon chemical potential for

magnetic field strengths eB = 15m2 (solid curves) and eB = 20m2 (dotted curve), and temperatures 7 = 50 MeV (top panels) and T = 100

MeV (bottom panels).
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netic field eB = 15m? , and pc ~ 200 MeV for eB = 20m2.
Also, the mass of fy meson degenerates at lower i than
at T =50 MeV (top panel).

In Fig. 6, two independent quantities (7 and eB) have
non-negligible effects on the dependence of meson
masses on u. From the QCD phase-diagram [31, 32] and
the chemical freezeout boundary [53], we conclude that
increasing T reduces pcrit. Our results also show that in-
creasing T reduces g, at which the bosonic contribu-
tion for a finite chemical potential becomes small. In-
creasing u has an obvious influence on scalar mesons, as
reaching stable levels of meson masses is accelerated.
These are the levels at which the meson masses no longer
depend on u. Concretely, we observe that the masses of
vector mesons stay nearly constant until the phase trans-
ition takes place, while the masses of axial vector mesons
show stronger melting above the Fermi surface. Further-
more, increasing eB is assumed to reduce i and thus to
enhance the chiral phase-transition, which explains the
influences of finite ¢B on the u dependence of various
meson states.

3.2.3 Meson states normalized to the lowest Matsubara
frequency
In thermal field theory, the Matsubara frequencies are
considered as a summation over all discrete imaginary
frequencies

S, =T Zg(iwn), (26)

where + stands for bosons and fermions, respectively, and
g(iw,) 1s a rational function, where 'w, =2nxT and
wy, = (2n+ D)nT represent bosons and fermions, respect-
ively. The integers n =0,+1,+2,--- play an important role
in the quantization process. Using the Matsubara fre-
quency, the weighting function T';(z) has two poles at
z = iw,. Then

T
S :2—7”, 56 8T, (2)dz. 27

I'.(z) can be chosen depending on which half plane the
convergence is to be controlled in,

1+n.(z)
T
T.() = : (28)
n+(z2)
T
where the single particle distribution function is given as
ne(z)=(1=e/M)"

The boson masses are conjectured to get contribu-
tions from the Matsubara frequencies [54]. Furthermore,
at temperatures above the chiral phase-transition (7 > T.),
the thermal behavior of the thermodynamic quantities,
such as susceptibilities, and of the masses are affected by
the interplay between the lowest Matsubara frequency
and the Polyakov-loop potentials [55]. In light of the lat-

ter, we apply a normalization of the present meson sec-
tors with respect to the lowest Matsubara frequency,
which is associated to bosons 27T [56]. This allows to
define the dissolving critical temperature at which the
various meson states are conjectured to liberate into the
degrees of freedom of free quarks and free gluons. We
found that different meson states have different dissolv-
ing temperatures, which means that different hadrons, in
this case mesons, have different chiral critical temperat-
ures (T,). In other words, not all hadrons melt into a
quark-gluon plasma simultaneously.

Figure 7 depicts the normalization of the different
meson states with respect to the lowest, in this case bo-
sonic, Matsubara frequency (227T) for a vanishing (top
panel) and finite baryon chemical potential (bottom pan-
el), and different magnetic fields eB =m2 (solid curves)
and eB= 10m2 (dotted curves). The legends are identical
to those in previous figures. It is obvious that the masses
of almost all meson states become independent of tem-
perature, i.e. construct a kind of a universal curve, espe-
cially at high temperatures. This observation is a clear
signature of dissociation of mesons, which are apparently
dissolving into free quarks and gluons. Also, it is found
that the characteristic critical temperature does not seem
to be universally valid for all meson states. As discussed
in earlier sections, the two thermodynamics variables,
temperature and magnetic field, seem to enhance the chir-
al phase-transition and therefore have a considerable in-
fluence on the corresponding critical temperature. This
observation is also confirmed here.

Table 2 summarizes the different meson states and
their approximate dissolving critical temperatures (7¢)
for the finite magnetic field eB = m2 and vanishing bary-
on chemical potential. The magnetic field strength
eB =m2 is likely to be generated at the top RHIC energy.
The critical temperatures T¢ can roughly be read off from
the resulting graph. Statistical uncertainties (errors) have
not yet been estimated. As mentioned, different meson
states seem to have different dissolving temperatures.
This is a novel observation of the present work. To con-
nect the latter with the critical temperatures, the first prin-
ciple lattice calculations should be first reproduced by our
QCD-like calculations. The experimental results should
be verified as well. It should be noted that our calcula-
tions are based on PLSM, a QCD-like model in which not
all aspects of QCD are taken into account. Nevertheless,
PLSM as such seems to give a good picture of what lat-
tice QCD simulations produce. As an outlook, we plan to
devote a future work to a systematic analysis of the res-
ulting dissolving temperatures at varying magnetic fields.
The latter can be obtained at different beam energies and
in different heavy-ion collision centralities, especially in
the future facilities which will enable to cover the gap at
high densities.
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Fig. 7. (color online) Left-hand and middle panels depict the scalar and pseudoscalar meson sectors, respectively, as function of tem-
perature for vanishing (top panels) and finite baryon chemical potential (bottom panels). The right-hand panel shows the same as in
the left-hand panel but for vector and axial vector meson sectors.

Table 2.  Approximate dissolving critical temperatures, T¢, corresponding to different meson states at eB = m2. Statistical uncertainties (errors) have

not yet been estimated.

vector mesons axial vector mesons

comparison scalar mesons pseudoscalar mesons
meson states ap ko fo nKnn
430450 470 450 320230335 240

T¢ in MeV

pKjwg
495 495 495 495

a1 K1 fi ff
495 495 495 495

4 Conclusion

The present study aims at a systematic investigation
of the temperature and chemical potential dependence of
sixteen meson states [pseudoscalars (J7¢=0""), scalars
(JP¢=0""), wvectors (JP“=17") and axial-vectors
(JP¢ =1*")] constructed from the SU(3) Polyakov linear-
sigma model in the presence of finite magnetic fields.
The introduction of magnetic fields in this QCD-like
model is accompanied by certain modifications in the
phase space and in the dispersion relations, among others.
Also, this requires Landau quantization to be implemen-
ted, for which we use the Landau theory for quantized
cyclotron orbits of charged particles in an external mag-
netic-field. Consequently, some restrictions are added to
the color and electric charges of the quarks.

In relativistic heavy-ion collisions, a huge magnetic
field is expected. For instance, due to oppositely directed
relativistic motion of charges (spectators) in peripheral
collisions and/or due to the local momentum-imbalance
of the participants in central collisions, a huge magnetic
field can be created. To get a picture of its magnitude, we
recall that at SPS, RHIC and LHC energies, the strength
of such fields ranges between 0.1 to 1 to 10— 15m2, re-

spectively, where m2 ~ 103Gauss. In light of these estim-
ates, studying the possible influence of the magnetic field
on QCD matter is of great interest for our understanding
of heavy-ion collisions, and, therefore, it increasingly
gains popularity among particle physicists.

In the mean-field approximation of PLSM, a grand
canonical partition function can be constructed. In order
to prepare for the proposed calculations, we have to es-
timate the temperature dependence of the deconfinement
(¢ and ¢*) and chiral order parameters (o; and o) in pres-
ence of a finite magnetic field. We have found that, tak-
ing into consideration the influence of finite magnetic
fields, these parameters strongly affect the entire QCD
phase transition.

In a previous work, we have studied the distribution
of Landau levels and showed how they are occupied for
finite magnetic field, temperature, and baryon chemical
potential [35, 40]. We concluded that the occupation of
each Landau level varies with quark electric charge, as well
as with temperature and baryon chemical potential. This
is assumed to be characterized by the QCD energy scale.

In PLSM with mean-field approximation, the masses
can be determined from the second derivative of free en-
ergy with respect to the corresponding hadron field, eval-
uated at its global minimum. We have presented the tem-
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perature and chemical potential dependence of sixteen
SU(3) meson masses in finite magnetic fields. For a fi-
nite magnetic field, the broken chiral-symmetry is as-
sumed to contribute to the mass spectra. We utilize this
assumption to define the chiral phase structure of nonet
meson sectors as function of temperature and chemical
potential. We found that the spectra of meson masses can
be divided into three regions.

e At small temperatures and baryon chemical poten-
tials, the first region is related to the bosonic contribu-
tions which are apparently stable.

e The second region is the chiral phase transition,
which seems to have a remarkable influence related to the
finite magnetic field. It is obvious that the finite magnet-
ic field improves, i.e. sharpens and accelerates, the chiral
phase transition of a given meson state.

e The third region is characterized by fermionic con-
tributions, which increase with increasing temperature.

We conclude that the thermal bosonic (meson) mass
contributions decrease with increasing temperature. The
fermionic (quark) contributions considerably increases at
high temperatures. At low temperatures, bosonic contri-
butions become dominant and reach a kind of a stable
plateaus relative to the vacuum mass of each meson sec-
tor. In this temperature limit, the effects of fermionic con-
tributions are negligibly small. It is noteworthy to  high-
light that the bosonic contributions result in the mass gap

Appendix A: Masses of sixteen mesonic-states

In vacuum, the mesonic sectors are formulated independently
for nonstrange and strange fields:

e For scalar meson states, the squared masses for the scalar
sector (i = §) are given as

31 V2c
2 2 =2 =2 ) _
Mg, =m”+ A (a', +(rx)+ 5Ot (A1)
A
2 2 2
m, =m +/11(U'1+0')+7(0',+\/>0'[(T +20')+20',, (A2)
m,zr :m§ 00 cos? Os + m§,88 sin? Os + 2m§‘08 sinfg cosfy, (A3)
m%o :m§,00 sin2 Os +m§’88 cos? Os — 2m§.’08 sinfs cosfs, (A4)

with
m§ 00 =m>+ = 3 (70’l +4 ‘/70'105 +507% )

+/12(&,2+(r2,)— %(\6@'1+5’5),

s

A
mg,gg =m? + ?1 (56’2 -

a2 \/Ec a
+2 — V25 ——f)
+/l[2 0']+ 3 ( ol 2 )

425,55+ 7&3)

24
m§,08 :T](\/E& — 0105 — \fa' )

1= \65}).

+ \F/lz(——o' ]+$(5—

between different meson states in thermal and dense me-
dium. With increasing temperature, the fermionic contri-
butions complete the thermal behavior of these states and
lead to mass degeneracy at very high temperatures.

From the scalar and vector mesons normalized to the
lowest Matsubara frequency, we also conclude that a rap-
id decrease of their masses is observed as the temperat-
ure increases. Starting from the critical temperature cor-
responding to each meson sector, we find that the temper-
ature dependence almost vanishes. At high temperatures,
we note that the masses of almost all meson states be-
come temperature independent, i.e. they construct a kind
of a universal line. This is to be seen as a signature of dis-
solving of confined mesons into colored quarks and
gluons. In_other words, the meson states undergo differ-
ent deconfinement phase transitions, i.e. the various had-
rons very likely have different critical temperatures. This
is one of the essential findings of the present study, to be
confirmed by first-principle lattice simulations and ulti-
mately in future experiments.

We have compared our calculations for scalar and
vector mesons with the latest compilation of PDG, lattice
QCD calculations and QMD/UrQMD simulations, and
found that our results are remarkably precise, especially
for some light mesons at vanishing temperature. This im-
plies that the parameters of the QCD-like model we have
utilized are reliable.

e For pseudoscalar meson states, the squared masses for the
pseudoscalar sector (i = p) read

A V2e
2 2 2 2 _
my =m +/11(0'[+0' )+7 7 2 — 0y, (AS)
A
2 2 2
my =m +/11(a',+0' )+7( \fa'/cr + 20 )—Ea'/ (A6)
m,zl, :m;,OO cos? 0y + mfr,SS sin’ Oy + 2m;08 siné), cos ), (A7)
m,zl :m;’OO sin® 6, + m127,88 cos? g, — Zmi’og sinf, cos 6, (AB)
with
A c
.00 =m+ (6_[2 +6’§) + ?2 (6,2 + ’2) +3 (25—, + \/56'5),
o ooy, Ay -
mi,gg =m-+A1; (a',2 +0'§) s (0',2 +4(r§) (40’1 \fo-s)
\/j/lz _ _ c _ _
m?y,os — (0'12—20'3)— 6(\50'1—20}),
and the mixing angles are given by
2m?
tan26; = ’082 Li=S.p. (A9)
M0~ Miss

e For vector meson states, the squared masses for the vector

sector (i = V#) can be expressed as

hy
mz—m1+ (h1+h2+hq)<rl 50 G426, (A10)
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2 2 i 2
My =my + T(g1 +2h +h2)

10 52

2y, s (2
+ \/E(h3—81)+7(81+h1+hz)+61+6x, (A11)
mg, =mp, (A12)
h h
ey, = m?+7lf‘f,2+(7'+hz+h3)rr§+26x, (A13)

e And finally, for axial-vector meson states, the squared masses
for the axial-vector sector (i = A) are

my, =m?+%(2g?+h1+hz—h3)c‘rlz+h7'&§+25,, (Al4)
2 2. 179 2 I 2
my =mj + Z(gl +2h +h2)0'1 - %(T[O'S (h3 —g])

+%(gf+h. +h) G2 + 81+ 6, (A15)

mj, =mg, (A16)

. :m%+%’2h1+(2g$+%‘+h2—h3)&§+25s. (A17)
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