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Abstract:
dimensional spacetime.

This work deals with the behavior of fermions in the background of kinklike structures in the two-
The kinklike structures appear from bosonic scalar field models that engender distinct

profiles and interact with the fermion fields via the standard Yukawa coupling. We first consider two models that

engender parity symmetry, one leading to the exclusion of fermion bound states, and the other to the inclusion of

bound states, when the parameter that controls the bosonic structure varies from zero to unity. We then investigate

a third model where the kinklike solution explicitly breaks parity symmetry, leading to fermion bound states that

are spatially asymmetric.
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1 Introduction

The study of fermions in the presence of kinklike
structures has been initiated long ago, in the pioneer-
ing work by Jackiw and Rebbi [1]. An important in-
formation that appears from the investigations is the
phenomenon known as fermion number fractionalization,
which is due to the topological nature of the background
bosonic structure [2]. The model investigated in [1] is
defined in (1,1) spacetime dimensions, and describes a
real scalar field that interacts with a fermion field via
the Yukawa coupling. For more on kinks and related
issues see for example Ref. [3].

The interest in the fermion number fractionaliza-
tion goes beyond its mathematical identification since
it presents peculiarities that can be physically realized
in condensed matter situations, as shown in Refs. [4, 5].
The subject has been investigated by other authors, and
here we quote Refs. [6-10] to illustrate this possibility.
As is known, the effect of the fermion number fraction-
alization is directly related to the topological behavior
of the bosonic structure arising from the bosonic portion
of the model. However, in a recent work [10], another
possibility is investigated, focusing attention on the geo-
metric conformation of the topological structure that the
bosonic portion of the model brings into play.
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The geometrical aspects of the structure is of cur-
rent interest, since experiments may now be carried out
on miniaturized samples in constrained geometries, and
the geometry may drastically change the conformational
structure of the topological object, as experimentally ver-
ified for instance in Ref. [11]. The change in the confor-
mational structure of the bosonic background may in-
duce distinct physical properties on the fermion field, as
was presented in [10] and is further shown in the present
work.

There are many reasons to study the interaction of
fermion fields with bosonic backgrounds since it may cre-
ate or affect other interesting physical phenomena like
the Casimir effect [12, 13|, the Bose-Einstein condensa-
tion [14], and the localization of fermions in braneworld
scenarios [15-18]. Another motivation is the current in-
terest in the study of miniaturized samples of magnetic
materials [11, 19-22], and the recent investigation [10].
With this in mind, we introduce three models of the
type considered in [1] which support distinct bosonic
backgrounds. In the models, the bosonic portion that
generates the topological structures was studied before
in Refs. [23-25], and we use them to describe how the
fermion field behaves in such distinct backgrounds. For
the sake of simplicity we consider the minimal coupling
between the fermion and the kink, the Yukawa coupling,
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since the main idea is to capture, in a general way, how
the fermion would perceive the change in the kink pro-
file. In the context of fermion-soliton systems it is the
most common interaction considered in literature.

To implement the investigation, we organize the work
as follows: In Sec. 2 we introduce the general model and
deal with some of its properties which are of direct in-
terest for the present investigation. We review the case
of a fermion field coupled to the sine-Gordon model in
Sec. 3, since this is also of general interest to the current
work. We study three new models, explicitly showing
how the fermion bound states and energies are charac-
terized in each case. In the first two models, the bosonic
background structures are controlled by a real parame-
ter and obey the parity symmetry, but they behave dif-
ferently as the parameter increases from zero to unity,
one excluding and the other including fermionic bound
states in the system. The third model is different, and
the bosonic structure does not obey the parity symmetry
anymore, so all the fermion bound states are asymmet-
ric functions. We end the work in Sec. 4, where we add
some comments and conclusions.

2 Generalities

We are interested in studying models described by
the Lagrangian

L=10,000-V (@) siidv-ol. (1)
which is similar to the model of Ref. [1]. We are deal-
ing with a scalar field represented by ¢ = ¢(x,t) and a
Dirac field denoted by ¥=1(x,t), which interact via the
Yukawa coupling that appears in the last term of the
above expression. In the models considered here we de-
fine V(¢) = W2/2, where W, is the derivative of some
function W=W/(¢) with respect to the field ¢. W in su-
persymmetric models is called superpotential, although
here we are using it as a mathematical tool to simplify
the calculations. Also, we use i=1 = ¢ and consider
dimensionless fields and spacetime coordinates.

We consider the topological structure of the kinklike
profile which arises from the bosonic Lagrangian

1 1
== L 2
Ly = 50,00"¢— W, (2)
as background solutions to be considered in the fermionic
Lagrangian
1 - _
Ly = §2¢¢¢—¢¢¢- (3)

The procedure is as follows: we first deal with the bosonic
model (2) to find the static kinklike structure that solves
the corresponding equation of motion

¢" =Wy Wy =0, (4)

where the prime stands for the derivative with respect to
the spatial coordinate x. As is well-known, in this case
the solutions obey the first-order equation

¢/:W¢7 (5)

and so are stable against small fluctuations.
The equation of motion for the fermion field has the
form

(i#—26) ¥ =0. (6)
For convenience, we choose to describe the gamma ma-
trices by the set (Y0,71,7s)=(01,i03,02). Moreover, since
the scalar field describes a static structure we write the
spinor field as

2.) —e—iEt w(H(m)

This ansatz can be inserted in Eq. (6) which allows to
rewrite the equation of motion for the Dirac field as

d
() _ ) _
Eq +<idx 2¢>w =0, (7)

which is a system of equations involving the components
of the spinor field ¥. We can use this system of equations
to obtain two Schriédinger-like equations given by

2
<_ddx2+Ui(x)> 1/}@) :E2¢(¥), (8)
where U, (z) =+2d¢/dz+4¢?, with ¢ = ¢(x) being the
static kinklike solution of the bosonic system. The decou-
pled Egs. (8) are used to find the fermion bound energy
spectrum. In general, the solutions of the decoupled sec-
ond order equations are not necessarily the solutions of
the coupled first order equations. Therefore, using the
resulting fermion bound energy spectrum, one can em-
ploy the first order Egs. (7) to find the correct bound
states of the fermion system.

We note that equations (8) have the form
QTRQEYE) = E2p®) | where Q* = +£d/dz+2¢. In par-
ticular, we can find an expression for the ground state
wave function by solving Q*¢™*) =0, and obtain

:t x z/ z/

U = om0 )
where ¢4 are normalization constants; for regularity of
the ground state one of them has to be zero. To find the
massive bound states, one uses Egs. (7) and (8). It can
also be shown that the stability equation for the scalar

field is
@y
dx?  d¢?

) (@) =wyma (), (10)
p=¢(x)

To get this equation, we have set ¢(z,t) = o(x)+
> () cos(w,t). In this case the zero mode no(x) of
the scalar field is proportional to the derivative of the
static solution itself, i.e, no(x)~¢'(x), and the solution
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is classically or linearly stable. To see this explicitly, we
recall that

d2v )

?&:W¢¢+W¢W¢¢¢a (11)
which has to be calculated for the classical static solu-
tion ¢ = ¢(x). Thus, one can rewrite the second-order

differential operator in Eq. (10) as

dz  d*v d d
T T dgr (dew) (deM)v (12)
which can be defined as STS. Multiplying Eq. (10) by
n' from the left, using the Eq. (12) and integrating over
the whole space we find
- 2
EEELILI 13
JoZ da [nf?
which means that w? has non-negative eigenvalues.
Another interesting result is that the threshold en-
ergy is taken at the limit ¢(z — 00) = ¢min, where
the bosonic field approaches the minimum of the scalar
potential. Moreover, for the well-behaved solutions
of the fermionic bound states we require that in this
regime ¢ — ¢y and dy® /dz — 0. In this way, the
threshold energy equation, derived from (7), becomes
Einci—2¢minc: =0, and thus one finds Fy, =2¢.,i,, which
is equal to the square root of U, for spatial infinities, as
expected.

3 Models

Let us now consider some explicit models. We are
interested in studying the fermion field behavior when it
evolves in the background of a kinklike structure derived
from the bosonic model defined in terms of the potential

V)= W2, (14)

for the following three distinct cases:

W, — ﬁcdw,x), (15a)
2e?(9/2,0) (1))
We = dn(¢/2,)) ’ (15b)
and
Wy=(1-¢)(1+¢"). (16)

Kinklike solutions for the bosonic models (15a) and
(15b) were presented in [23, 24]. The models are written
in terms of Jacobi’s elliptic functions, where cd(¢p,\) =
cn(p,\)/dn(¢,A) and A is a real parameter in the interval
[0,1]. Both (15a, 15b) reduce to the sine-Gordon model
for A — 0, and approach solutions with infinite ampli-
tude when A\ — 1, but in quite different ways. Model
(15a) has, for any value of A, an infinite set of degener-
ate topological sectors with meson mass m?>=1/(1—\)?

which increases as A — 1 and is not defined at A = 1.
Model (15b) has two different infinite sets of topological
sectors, but the mass of the meson is m?=4(1-\?), which
decreases as A—1 and is well defined at A=1, where it
is zero. For A=0 these sets are equivalent, but they are
different as we vary the \ parameter. In particular, the
topological sector we choose to work on here approaches
the vacuumless solution in the limit A—1.

The third model is defined by Eq. (16). It was pre-
sented in [25], and the parameter p is an odd integer,
p=1,3,5,... . Here the system presents a single topo-
logical sector, and the reflection symmetry is broken for
p#1. In this case, there are no changes in the minima
of the scalar potential, which are at ¢==1 for all p, so
that the asymmetry is only revealed by the two classical
meson masses, or by the potential seen by the fermion
field.

Considering the Lagrangian (3) for all three models,
the system has energy-reflection symmetry given by ~*
as well as charge-conjugation symmetry which is repre-
sentation dependent, and in the representation we have
chosen is given by o3. Therefore, we expect that the
fermionic bound energy spectrum is symmetric around
the £ =0 line in all cases considered here. However,
although the first two models enjoy parity or reflection
symmetry, the third model does not respect this symme-
try, and so it should be studied more carefully.

Due to the relevance of the sine-Gordon model [26]
in the context of the present work, let us first review its
solution and stability. It appears as a particular case of
the models (15a) and (15b) for A =0. Thus, we have
W,=cos(¢) and the solution for the scalar field has the
form

¢(z)==+sin"" (tanh(z)). (17)

In this case, the stability potential associated with the
bosonic field is given by Vsg=1-2sech?(z), which has a
reflectionless shape and only one bound state, the zero
mode, given by 7y =sech(z). However, if we take the
above solution and use it in equation (8), we end up
with the following potentials

Ui:4(sin’1(tanh(m)))2i2sech(a:) (18)

which asymptotically approach Uy (do00)=7>. The po-
tential U_(z) allows nine fermionic bound states, which
occur at the energies E, = 0,F, = £1.87806,F, =
+2.48335, K3 = +2.83358 and E, = +3.03448. The zero
mode can be obtained analytically and, up to a normal-

ization factor, is given by
e—(21(200t71(e"’)+sin71(tanh(z)))+2Ti2 (ef""))
o (x,t) ox 0

Here, Ti, () is the inverse tangent integral, which can be
written in terms of polylogarithmic functions by the re-
lation Ti,(e™*)=i(Liy(—ie™®)—Li,(ie™*)). For the other
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(c) BE3==42.83358
Fig. 1.

(d) B4=+3.03448

(color online) The ¥+ (blue, solid line) and 1) (red, dashed line) components of the massive bound states

and the corresponding eigenenergies of the fermion field coupled to the sine-Gordon soliton (17).

bound states, we solve the set of equations in (7) and (8)
and plot them in Fig. 1.

3.1 Model I

Let us now look at model (15a) for general A. In this
case, the solution obtained for the scalar field is given by

¢(z)=sn"" <tanh<1_x)\> ,A),

where sn(x,)) is the Jacobi elliptic sine, and its stability
potential is

(19)

d2v
dg¢?

p=9¢()

It approaches U(z— +00)~1/(1-X)?, which implies that
the depth of the well increases with A\. For A =0 the
expression (20) is well defined and has only one bound
state which is the sine-Gordon case. However, for the
other values of A, we find an excited state, which has
an energy gap with respect to the ground state that in-
creases with A.

Given the Yukawa coupling between the boson and
fermion fields, the Dirac field spectrum must be affected
by changes in the behavior of the bosonic structure. For
Model I, the fermionic eigenstates are given by equations

(7) and (8), and now the potentials Uy have the form

U, = 4 (sn-1 (tanh (i) ,A>)2
j:%cd <sn1 (wm(&) 7A) ,/\> . (21)

The behavior of U_ is shown in Fig. 2. Asymptotically,
it approaches Uy (+00)=4K (\)?, where K () is the com-
plete elliptic integral of the first kind, which diverges as
A—1. At x=0 one gets U (0)==%2/(1-A). Therefore, for
U_ the depth of the well increases but its width reduces
as A—1. This effect is illustrated in Fig. 2, and it causes
the exclusion of bound states in the well, as shown in
Fig. 3, as expected from the quantum mechanical point
of view. The issue here is that the bosonic structure be-
comes more localized as A increases, and this contributes
to the expulsion of the fermionic bound states. In partic-
ular, one can see that for the following values of \ there
are different numbers of bound states: for A=1/4, nine
bound states; for A=1/2, seven bound states; for A=3/4,
five bound states; and for A=9/10, only one bound state.
To find numerically the bound states in this model, and
the other two as well, we solved the eigenvalue problem
of Eq. (8) using Mathematica. Besides, we confirmed the
results by solving the first order differential equations in
(7) using the Runge-Kutta-Fehlberg method of order 5,
which is a well known method to solve a set of coupled
differential equations. The boundary condition we have
used is that the value of the fermion bound states should
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be zero at infinities, which follows from the definition of
the bound states. The results of the two calculations are
indistinguishable within the numerical precision.

5

\

4

_10,

Fig. 2. (color online) The U_ potential that ap-

pears in Eq. (21) for Model I, shown for A =

0,0.25,0.5,0.75, depicted by solid, dashed, dot-
dashed and dotted curves, respectively.

2
T
N " " " Y
0.2 0.4 0.6 0.8 1
S T T
27T
Fig. 3. (color online) The fermionic bound state

energy spectrum as a function of A for Model I.
The solid (black) curves correspond to threshold
energies.

Unfortunately, we could not find the analytical ex-
pression for the bound state wave functions correspond-
ing to an arbitrary A. Nevertheless, we could observe
some characteristics of its behavior. In the vicinity of
x=0 the scalar field behaves as ¢(z—0)~z/(I-AHO (z?),
so the shape of the ground state in this region is ~
6712/(1”)“9(14), which means that higher the value of
A, the narrower is the wave function. Moreover, asymp-
totically the scalar field is ¢(z — 00) ~e~*/(U=N 4L K(N),
which implies a decay proportional to e 25M® in the
ground state wave fucntion as A — 1. The behavior
of the fermionic zero mode wave function in these two
limits suggests that as A increases, the normalized wave
function becomes taller and narrower, as illustrated in
Fig. 4. The same effect occurs for the excited states of
the model.

Fig. 4. (color online) The normalized fermion zero
mode in Model I derived from equations (7) and
(8) with the scalar field given by (19); A =
0,0.5,0.9,0.95, depicted by solid, dashed, dot-
dashed and dotted curves, respectively.

3.2 Model II

We now study model (15b) for general A. As shown in
[24], this model has two solutions. In one of them there is
a transition between the sine-Gordon kink and the vac-
uumless solution presented in [27, 28], so we choose this
solution as the background field. It is given by

¢(x)=2sc™" (

where sc(¢p,A\)=sn(¢p,\)/cn(p,\). Here, we have A€[0,1],
and the stability potential for the scalar field, which has
only one bound state for any A, evolves from a reflection-
less shaped potential for the sine-Gordon case, to a vol-
cano potential for the vacuumless solution. The drastic
change in the shape of the stability potential can be ex-
plained by the behavior of the mass of the meson in the
bosonic term of the Lagrangian (1), which approaches
zero as A—1.

Once we have chosen the solution (22) as the back-
ground field, we can look for the potential U_(x)

gtanh (;\/1—)\296) ,/\>, (22)

U_. =16 (sc_1 ( R\\tanh(;\/l—)\%) ,/\)) (23)

2(1-2%)nd (S(f1 ( 12 tanh (1v/1-A2z) 7)\) ,A)

cosh (\/ 17)\21:) -2

where nd(z,\) =1/dn(z,)\). This potential is shown in
Fig. 5. Unlike the previous model, we now have a sys-
tem in which the number of bound states increases with
A; we are “capturing” more and more bound states as
A increases. This is illustrated in Fig. 6. In particular,
when A=1 and the fermionic potential becomes

4
v+l

Usl,_,=16sinh™'(z)>+ (24)
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we find an infinite tower of bound states. The issue here
is that the bosonic structure becomes less localized as
A increases, and this contributes to the inclusion of the
fermionic bound states.

-5C

Fig. 5. (color online) The U_ potential that ap-

pears in (23) for Model II, shown for A =
0,0.25,0.5,0.75, and 1, depicted by solid (red),
dashed, dot-dashed, dotted and solid (black)
curves, respectively.

27Tk

Fig. 6.

(color online) The fermionic bound state
energy spectrum as a function of A\ for Model II.
The solid curves correspond to threshold energies.

As in Model I, we could not find analytically the zero
energy solution for the Dirac field for general A, but we
could still get some information about its behavior. In
the neighborhood of x =0, the scalar field behaves as
¢z ~0) = (1+N)z+0O(z?), so the wave function has
the form e~ (+V=*+0(s%) However, we should be care-
ful when analyzing its asymptotic behavior because of
the fact that the form of the solution in this regime is

d(x — 00) e V172 16 with ¢, = 2sc~? (, /%,)\),

which does not allow to study the particular case A=1.
However, a direct analysis of the vacuumless solution
shows that the asymptotic behavior of the scalar field
is in the form ¢y—;(x — 00) ~ —2lnx. Thus, the ground
state wave function decays as e™2?>® for A #1, and it
decays as e'®x7%* for A=1. We can integrate the vac-
uumless solution in order to find the exact form of the

ground state at A=1, which is

e—4<xsinh*1(m)—\/m>
0

Yz t)=cy

The normalized zero mode is displayed for representa-
tive values of A in Fig. 7. We note that it remains well
behaved in the full interval A€[0,1], including A=1, al-
though there is an increase in its height. This behavior
is different from the one shown in the previous section,
since there the zero mode shrinks to a narrower and nar-
rower region around its core z~0 as A\ approaches unity.

Wo

Fig. 7. (color online) The normalized fermion zero
mode in Model II derived from the solution (22)
for A =0,0.25,0.5,0.75, and 1, depicted by solid
(orange), dot-dashed, dashed, dotted and solid
(black) curves, respectively.

3.3 Model II1

We now study how asymmetries within the scalar po-
tential can affect the behavior of the fermionic bound
states. We perform the numerical analysis of model
(16), presented in [25]. This model presents a topolog-
ical sector between ¢p=1 and ¢ =—1, where the masses
of the mesons are given by 4 and by 4p?, respectively.
Note that as the scalar field asymptotically approaches
¢(x—+00)— =1, the height and width of the well remain
almost the same for all p, unlike what happens with the
stability potential for the bosonic field. Thus, the dif-
ference between the masses of the mesons in the scalar
potential generated by the variations of the parameter
p implies only internal asymmetries in the fermion po-
tentials, as shown in Fig. 8. Note that as the parameter
p increases, the fermionic potential presents higher and
higher asymmetry, and breaks the reflection symmetry;
for negative values of x the potential reaches its maxi-
mum faster as p increases. This is in contrast with the
behavior for positive x, which is smoother.
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e e

Fig. 8. (color online) The U_ potential of Model
II1, shown for p=1,3,5, and 7, depicted by solid,
dashed, dot-dashed and dotted curves, respec-

tively.
E
2 ——————————————————————————————————————————
1l
0
1 3 5 7 9 11 13 5 "
1t
Sy ey
Fig. 9. (color online) The fermion bound energy

spectrum as a function of p in Model III. The
dashed lines correspond to threshold energies.

In Fig. 9, we show the fermion bound energy spec-
trum for several values of the parameter p. As one can
see, the energy is not very sensitive to the value of p, al-
though it is not entirely independent of p. In this model
there are exactly three fermion bound energy states. The
normalized fermionic zero mode is shown in Fig. 10,
where we observe that the shape varies only slightly as p
increases. This happens because asymptotically we have
d(r~o00)~1—e 2" and ¢(z ~ —oc0) ~ —1+e**, which
implies that in the regime r~oc the ground state wave-
function decays as ~e~22=¢""" and in the limit z~—o0c
it falls off as ~e>**5°"" Consequently, for p > 1, the
emerging nonlinearities due to the variations of this pa-
rameter are stronger for <0. Moreover, the asymmetry
of the fermionic ground state evolves as a function of
p more slowly than the bosonic zero mode asymmetry,
presented in [25]. This is due to the fact that the field
nonlinearities appear in the exponent of the exponen-
tial, and thus the changes of the curve shape are less
pronounced. Therefore, in this model the fermionic zero
mode responds asymmetrically to the parity-symmetry
breaking.

Fig. 10. (color online) The normalized fermion zero
mode derived from Model III, shown for p=1,3
and 5, depicted by solid (orange), dashed (blue)
and dotted (black) curves, respectively.

In Fig. 11, we show the fermion massive bound states
for the cases p=1 and p=3. One can see that the com-
ponents ¥ and () respect the parity symmetry for
p=1, but this is not true anymore for the case p=3, as
expected.

The asymmetry of the normalized zero mode shown
in Fig. 10 can be quantified via the mean value

,u:/ dzayyp.

o]

(25)

The results are shown in Fig. 12, where one sees that
there is no asymmetry for p=1; it appears for p=3,5,...
and varies smoothly as p increases.

Fig. 11.
nents of the massive bound states in Model III,
shown for p=1 with solid and dashed blue curves,
and for p=3 with dot-dashed and dotted orange
curves, respectively.

(color online) The ™) and ¥ compo-
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u
012}
0.08 ’
0.04}
T
Fig. 12. (color online) The mean value p which

measures the spatial asymmetry of the normal-
ized zero mode, shown for several values of p.

4 Comments and conclusions

In this work we studied the behavior of the fermion
field in the background of three kinklike structures that
respond with distinct geometric conformations. The
three bosonic structures arise from models described by
a single real scalar field recently investigated with dis-
tinct motivations, but here we use them to see how the
fermion bound energies and states behave in each case.
The first two models are controlled by a real parame-
ter, A, which highlights fascinating characteristics of the
models. The third model is different and is controlled by
an odd integer parameter, p, which induces the parity-
symmetry breaking, due to the asymmetric form of the
bosonic potential.

Model T has the peculiarity of describing a back-
ground potential for the fermion field, which deepens and
narrows as A approaches unity, such that the presence of
the fermion bound states is reduced when A increases.
Model IT has a distinct behavior, and the background
potential is now capable of adding new fermion bound
states as the parameter X increases in the interval [0,1].
We find that as A increases from zero to unity, the num-
ber of fermion bound states diminishes in Model I, while
it increases without limit in Model II.

While Models I and II obey parity symmetry, Model
I1T engenders another behavior, which is also of current
interest. It is controlled by an odd integer p=1,3,5,...,
capable of inducing the parity-symmetry breaking. The
calculations are more intricate, but we have been able to
show that the asymmetry present in the bosonic back-
ground is also induced in the potential of the fermion
field, making the zero mode and the other bound states
asymmetric. The asymmetry appears in the background
potential and in the fermion bound states, and may be
of practical use when one deals with asymmetric back-
ground structures; see for example Ref. [29], where the
asymmetry of the localized structure plays a crucial role
for understanding of the kink-antikink collisions in the
@°® model, and also Ref. [30] for the case of asymmetric
structures in magnetic materials.

The authors thank the Brazilian agencies CAPES and
CNPq for financial support. A.M. also thanks Universi-
dade Federal de Pernambuco for Qualis A funding.
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