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Abstract:
to an experimentally measured distribution is considered from a mathematical viewpoint. It is shown that there are

The multiple-solution problem in determining the parameters of three interfering resonances from a fit

four numerical solutions for a fit with three coherent Breit-Wigner functions. Although explicit analytical formulae
cannot be derived in this case, we provide some constraint equations between the four solutions. For the cases of
nonrelativistic and relativistic Breit-Wigner forms of amplitude functions, a numerical method is provided to derive
the other solutions from that already obtained, based on the obtained constraint equations. In real experimental
measurements with more complicated amplitude forms similar to Breit-Wigner functions, the same method can
be deduced and performed to get numerical solutions. The good agreement between the solutions found using

this mathematical method and those directly from the fit verifies the correctness of the constraint equations and

mathematical methodology used.
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1 Introduction

One of the main aims during the physics analysis of
experimental data is determination of the parameters of
several resonances by fitting the cross sections or mea-
sured mass spectrum with possible interference between
the resonances considered. In some cases, although the
fitted results with interference are not taken as nominal
results, the interference still needs to be considered as an
estimate of the systematic uncertainty.

In particle physics, we usually take Breit-Wigner
(BW) function to represent resonance amplitude. A typ-
ical task is determination of the BW parameters from the
fit to the measured distributions in experiment, such as
cross sections. The measured physical quantities are usu-
ally in proportion to the modulus of the total amplitude
squared, for example, | BW,;+BW,e'?|? for two interfer-
ing resonances and |BW1+BW261¢1+BW3ei¢2‘2 for three
interfering resonances, where ¢, ¢;, and ¢, are the rel-
ative phases between resonances. Due to this squaring
operation in the amplitudes, to connect with the mea-
sured physical quantities, we can find multiple solutions
in extracting amplitudes from the fit to the experimental
measurements. Often it occurs that these multi-solutions
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have the same goodness-of-the-fit, and resonance mass
and width, but the relative phases are different. This
indicates that different solutions have different coupling
strengths to decay channels, which would result in differ-
ent interpretations in physics. Therefore, for a fit with
interfering resonances, we need to make sure that all the
solutions have been found. If there are multiple solu-
tions, but only one is reported, the experimental results
may be incomplete or even biased.

Recently, more and more experimental analyses, es-
pecially the studies of the vector charmonium-like Y
states, have indicated this. For example, in Ref. [1] two
or three coherent resonances plus an incoherent back-
ground shape are used to fit the "7~ ¢(2S) invariant
mass distribution. Correspondingly, two or four solu-
tions are found with identical resonance mass and width
but different couplings to electron-positron pairs. An-
other example is presented in Ref. [2], where two solu-
tions are found in the branching fraction measurement
for the ¢— w7® process and the study of p—w mixing.

In real physics analyses, all the multiple solutions are
found via a fitting process. Due to background statisti-
cal fluctuations or limited statistics, not all the solutions
can be found easily in some cases. Therefore, from the
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mathematical point of view, a natural question is raised:
if a particular solution has been found, whether other
solutions can be derived from it. For the above question,
the authors in Refs. [3, 4] proved that if we use two coher-
ent BW functions to fit the measured distribution, there
should be only two different solutions, and they can be
derived from each other using analytical formulae and a
numerical method. As pointed out in Ref. [4], in the case
of three resonances with constant widths there are four
solutions with the same likelihood function minimum,
but an analytical solution of this problem appeared too
hard due to technical difficulties.

In this paper, we discuss the multiple-solution prob-
lem in determining the resonant parameters of three in-
terfering resonances from a mathematical viewpoint. Al-
though explicit analytical formulae cannot be derived, we
provide some constraint equations between the four so-
lutions. We also provide a mathematical method to get
additional solutions from the obtained one.

This work is organized as follows. After the Intro-
duction, we present a general mathematical model for
the amplitudes of three coherent resonance states in Sec-
tion 2. If the three resonances are described by the nor-
mal BW functions, the analytical expressions for the re-
lationship between the four solutions are deduced and
obtained. An effective approach is developed to obtain
the algebraic equations of the relationships between the
four solutions. In Section 3, the relations between the
four solutions are also deduced for relativistic BW forms.
In Section 4, two numerical examples produced by toy
Monte Carlo (MC) are utilized to cross check and confirm
our results. When the form of the resonance amplitude
is extremely complex, we can take a similar numerical
procedure to obtain other unknown solutions from the
known one. Finally, in Section 5, a short discussion is
given.

2 Mathematical methodology for three
simple BW amplitudes

In the light of two distinct features, (1) all solutions
have the same goodness-of-fit and (2) different solutions
have identical resonance masses and widths but different
couplings to electron-positron pairs, we construct a gen-
eral mathematical model for multiple solutions based on
three interfering amplitude functions.

A sum of three quantum amplitudes can be described
by a complex function e(x,z;,24,23) with the form

e(x,21,22,23) =21 g(@)+20 f(x)+25 h(z), (1)

where x is a measured variable, g(x), h(z), and f(x) are
complex functions of z, and z;, z,, and z3 are complex
numbers. Our purpose is to find different parameters 2},
2y, and 24 satisfying

le(x,21,22,25)[" =le(x, 2,2, 23)|” - (2)

Since the global phase does not work on amplitude
squared operations, we can reduce the dimension of
{#1,22,23} parameter space to a {d,z,,z3} parameter
space, where d is a real number. The module of the
amplitude squared of e(z,21,2,23), |e(x,21,22,2)|°, can
be rewritten in a more convenient form by defining

—_

(21,22, 2)" = 5 lg(@)+2af (@)+25h(z)
_g@P|,, . @) k@]
T d T )
= @H—I—ZQF(@—F%H(J:)F
= |g(2)| E(2,20,25). (3)

Here F(z) = f(x)/g(x), H(x)=h(x)/g(x). Considering
lg(z)|” is only a product factor and is independent of z,,
25, and d, we remove it in the following derivation. What
we need to do now is to find different z,, 25, and d values
which keep E(x,z,,25)/d unchanged.

Taking (RF(x)v IF('T))a (RH(J:)’ IH(x))v (Rzav Iza)’
and (R.,, I.,) as real and imaginary parts of F'(z), H(z),
Za, and zg, respectively, and using them to represent
E(x,24,%25), we get

E(2,20,25)=1+(R3+17)(R2 +I2 )+2R. Rp—2I. Ip
H(RyHIE) (R +I2 ) +2R., Ry —21.,In

B
+2(RpRu+Iply)(R. R.,+1. 1)
~2(Rply—IpRy)(R. I.,~ L. R.,). (4)

For the sake of brevity, the specific form of dependence
of Rp(z), Ir(x), Ru(z), and Iy(x) on z is removed
here. Without loss of generality, we take d = 1 as
an initial solution for convenience. The next task is
to find all the possible z/,, zj, and d’ values to make
E(x,2,,,2;)/d = E(7,24,253). To be more specific about
our work, we consider that g(z), h(z), and f(z) are
widely accepted nonrelativistic BW functions, as an ex-

ample:

Fg
AR
T) = —Ff
f( ) (Z'—Mf)‘FZFf’
W) = (5)
(QC*Mh)ﬁ’ZFh’

where M is the mass and I is the width of a resonance,
respectively. Using the above forms of g(z), h(x), and
f(z), the real and imaginary parts of F(z) and H (z)
become

Iy [y +(My—z) (M —x)]
L7+ (Mp—x)?] ’

RF:
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Iy [Ty (My—a)— Ty (M;—x)]
Ly[I7+(My—x)?] ’
Fh[Fth+(Mg*x)(Mh*x)]
L+ (My—2)?] 7
Ly [Dh(My—2) =Ty (M) —2)]
L[4 (My—2)?] ’
respectively. After some algebra, we obtain the interest-
ing relations below:

IF:

RH:

IH:

R;—i—[;zafRF—i—beF—l—cf, R?I“V‘I?I:ahRH'i‘thH“FCh, (6)
with

I+ . M,—M,; I

= b, =9 E—

arg Fg y Uf Fg ) Cf Fg ’ (7)
I+ M,—M, I

ap= gF hybh: QF h7Ch=—Fh- (8)

g g g

With Eq. (6), E(z,24,,25) is recast as
E(I,Za72ﬁ):RF(QfR2a+afIz2a+2Rza)
+1p(bsR2 4bpI2 —21. )
+RH(ahR§ﬂ+ahI§B+2RZB)
+IH(th§ﬁ+thfﬁ—2Lﬁ)
+2 (RpRy+1ply)(R. R.,+1.,1.,)

~2 (Rply—IrRy)(R. I.,~I. R.,)
Fep(R2 42 ) +en (B2 +I2)+1. (9)

A similar expression can be obtained for E(x,z.,2};).
Notice that Rp, Ip, Ry, and Iy are functions in
variable space (namely x space), and [c;(RZ +12 )+
ch(R§B+I fﬁ)—%l] is a constant for x space. We notice
that the term (RrpRp+1IrIy) and the linear combina-
tion of Rp, Ir, Ry, and Iy have the same number
of x terms with the same power. It is the same for
the term (RpIy—1IrRy). So there are linear correla-
tions for (RpRy+1pIy) and (Rply—IrRy) by factors
{e1,¢a,¢3,¢4,¢5} and {cg,cr,08,¢9,¢10 }, TESpectively. That
means (RpRy+1rly) and (Rply—IrRy) can be repre-
sented by Rp, Ir, Ry, Iy, and a constant term.

RpRuy+Iply = ciRp+cylptcsRy~+caly
+oslep (R +I2, ) +en(RE A+ ) +1],
Rely—IrRy = csRp+cilpt+csRg+coly
+eroles (B2 412 )+en (R +12)+1].
(10)

The factors {c;,ca,c3,¢4,¢5} and {cg,¢7,¢8,¢9,¢10} follow

Eq. (11):

Iy (M7 +My My, — My (Mg+My,)+ (4T ) (T +10))

“ I, (M;—2M; M, + M +(I;+1;,)?) ’
CQ:Fh(th(FerFg)Jer(FnghHMg(FerFh))

T, (MZ=2M; M, +M2+(I+1)%) ’
¢y LMy (M= My) = My My A+ My Ly Lo+ Ly DA Ty A1)

[, (M2=2M My, +Mz+(L+T,)?) ’

ey LE M (L4 L)+ My (I 41) = My (14 1))

Ly(M7—=2M ¢ My+MpA4-(I'+17%)?) ’
o oI T (T4 +13) a1
* T (M?—2M;M,+Mz+(I+13)2)’

:Fh(—Mh(Ff+Fg)+Mf(Fg—Fh)+Mg(Ff+Fh))

“ T, (MI2M Mt ME+(L,+10)%)
L (M7 +MyMy—My(My+My,)+(Ip+1y) (T +1))

Cr——

T, (M2=2M; M, +MZ+(T+T)?) ’

Ly (M (Iy—Ly) =My (L +10)+M (Iy+13))

Cg—

I, (MZ=2M;M,+M2+(T+13)2)

Ly (M (My—My,) =My My+Mi+ Ty Ty D41y T+ 1)

Cg=

Ly(M7—=2M My +MpA4-(I'p+17)?) ’
2(—M+M,) Iy 1,

Cio=— .
O (M3—2M My +ME+(Ty+13)?)

Then we can get

E(z,20,25) :Rp(afRia +aflz2CY +2R,_ +c1A+csB)+1x (beia +bflz2CY —2I, +cyA+c:B)
+Ry (ahRiﬁ —I—ahlfﬁ +2R. 4csA+csB)+1y (thiﬁ +th35 —2I.,4¢;A+coB)
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e R 417 +chR§B —l—chffﬁ—i—l—l—cg,A—l—cmB,

with A=2(R., R.,+I., 1. ) and B=-2(R. I.,~I. R.,).

We know that R., L., R.,, and I, are functions
in parameter space {d,z,,z3}. If we want to make
E(x,2),2;)/d" = E(x,24,23) hold for any x, then the
corresponding coefficients of the functions in parameter
space should be equal, which immediately leads to the

following equations:

1
7 —(ayR2 +asI? 2R, +c,A'+csB')

=a;R2 +a;I2 +2R. +c1A+cB,

1
E (be;Za +bf_[;i —2_[;& +62A/+C7B,)

—by B2 +b, 12 —2I. +cyA+c:B,

1 ! /
7 (ath2ﬂ+ahIzi+2Rzﬂ+ch +cgB')

:ahR2 +ah12 +2R.,+csA+cs B, (13)

7 (th/2 +th”" —2I! +c4A +coB')

:thiﬁ +thz25_ 25 +C4A+CQB7

1
d'(CfR Fep 2 4o, B2 el +1+cs A'+eioB')

=c; R +epll +enR2 +enl? +14cs AtcioB,

with
A'=2R. R, +I. 1), A=2(R.,R.,+L.L,),
- (R;aI;ﬁ_I;aR/zﬁ)7 B:_2(Rzalzg_IzQRzB)~

All what we need is to solve Eq. (13) to obtain the val-
ues of R, , I/ R;B, ; , and d’. Unfortunately, there
are no exphclt analytlcal expressions for them. So we
cannot prove that there must be four solutions. Such
a conclusion agrees with that in Ref. [4]. However, by
using Mathematica [5] to input Eq. (13) and an initial
solution, we get exactly four numerical solutions quickly.
The numerical solutions can be taken as cross checks and
references compared with those from the fits. This defi-
nitely saves a lot of time and energy.

We need to point out that Egs. (6), (10), (12), and
(13) are independent of the explicit expressions of BW
functions, while factors such as ay, by, c¢f, an, by, cn,
{e1,¢2,¢3,¢4,¢5}, and {cg,c7,c5,Co,¢10} are dependent. |

(12)

|3 Mathematical Methodology for three
relativistic BW amplitudes

Here we take another form for f(x) , g(z), and h(z),
i.e., relativistic BW amplitudes that are usually used in
eTe™ reactions to extract the parameters of the Y reso-
nance:

12nlE BRI’
BW(s)= T ete-PrlR

PS(V's)
PS(Mpy)’

(14)

where s is the eTe™ center-of-mass square; My is the
mass of the resonance R; I'y and I'%__ are the total
width and partial width to ete™, respectively; By is the
branching fraction of the resonance R decays into a final
state; and PS is the n—body decay phase space factor,
which increases smoothly from the mass threshold with
/s [6]. Notice that Eq. (13) is independent of the forms
of amplitudes, while its coefficients will change. With
some algebra, we can obtain the coefficients for other
forms of amplitudes.

With Eq. (14), the F(z) and H(z) are changed to
Py & MM, [T PS(M,)
T)=
Ho) 2= M2HM,T, [1,PS(M,)
C22—-MZ+iM, L, \ T,PS(M,)’

In this situation, Rr, Ir, Ry, and Iy are changed.
So we need resolve parameters ay, by, ¢y, ap, by, cp,
{c1,¢a,¢3,¢4,¢5}, and {cg,c7,¢5,¢9,¢10} using Egs. (6) and
(10), respectively. We obtain

a; = (Ffo+FgMg) PS(MQ)
M;\/T;I, \ PS(M;)’
! w/rf_ PS( Mf = M PS(M;)
o _ LMyt LM,) [ PS(M,)
" M,\/T.I, \ PS(M,)’
b, — _(ME-M2) | PS(M,) Ch:_l\/[gPS(Mg) (16)
\/T PS Mh MhPS(Mh)’
and

)

TWPS(g) [M}—M3 (—T34-M2+M2)+Iy M(I'y My+I3, My )+My My, (I, Iy+MgMy,) |
&
" T,PS(h) [Mi+M2(I2—2M2)+20 1), My My, +M2 (T2 +M2)]
2 )

T,PS(h) [M}+M3? (I'?—2M2) 420y I, My My +M7 (I724M?))
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/Ty PS(g) [M? (M2 —M2)+T; My (T, My+1), My,)+ My, (= M2 M+, T, M+ M7+ T2 M,))

C3 =

T PS(f) [M}+M3? (I'f—2M2) 420 Iy My My, +M2 (I +M?)|

b

VI PS(g) [M3(—(IyMy+I, M)+ My (M2—M2)+M,M,(I',M,+I,M,)]

4=

T, PS(J) [Mi+M? (I3 —2M2)+21; I, M; M, + M2 (I7+M3)]
2M,PS(g)\/I'y I (I'y M1, My,)

)

Cs——

VPS(f)PS(h) [M}+M3 (I'3—2M2)+20 T My My +M7Z (T2 +M2)]’

VTWPS(g) [M3(I3, My, —T,M,)+I'y My (M2 —M2)+M, M, (I, M, I, M,)]

6 —

T,PS(h) [M}+M3 (I'?—2M2) 420y I, My My +M2 (I724M?)]

)

VTWPS(g) [M}—M2 (=24 M24+M2) +I'y My (I'y My+T3, M) +My My, (Iy I+ M, M,)]

=

I, PS(h) [M}{+M3 (I'#—2M32) 421 I, My My +M3 (I 4M?)]

)

VI PS(g) [M}(—(Ly My+I3 M)+ My (M7 — M) +M, M, (I, Mo+ T, My, |

s =

T, PS(F) [M}+Mj (I7=2M3)+21, [, My My M3 (T4 M7)]

)

VT PS(g) [M? (M2 —M2) T My(Iy M+ My)+M, (— M2 My 4Ty [ Mo+ M3+ T72M,)]

9=

T,PS(f) [Mi+M2(I2—2M2) 42T T, My My, +M2 (T2 +M2)]

)

2M,PS(g)\/I+ T, (Mf—Mf)

Cio=—

Substituting the above factors into Eq. (13), the relation-
ship between multiple solutions can be obtained. There-
fore, one can derive the other three solutions from the
one already obtained [5].

4 Check and application
4.1 Simple BW amplitudes

In order to verify our deduction on constraint equa-
tions and mathematical program in obtaining numerical
solutions, let us take a random example for the case of
three simple BW amplitudes with interference. The pa-
rameter values of the three BW functions as one solution
are set as

M,=3.80, I,=0.03,
M;=4.00, I';=0.04, ¢;=mr/3,
M,=4.25, T,=0.06, ¢,=3m/4.

The modulus of the amplitude squared of three interfer-
ing resonances is | BW, (m)+BW, (m)e¢s + BW, (m)e'*n |*
and the BW amplitudes use the formats shown in
Eq. (5). That is to say, z, = €%/ = 1/24++/3/2i and
zg=e'%h =—1/1/2+1/+/2i for the above solution. Using
the above probability density function and the first set
of input solutions, toy MC is used to generate a data
sample of 100,000 events. The generated distributions
with dots with error bars are shown in Fig. 1. A binned
extended maximum likelihood fit is applied to such a
distribution with three interfering resonances to extract
the parameters of the resonances. Four sets of solutions
are found. The fitted results are summarized in Table 1
and the corresponding fitted plots are shown in Fig. 1

PS(f)PS(h) [M}+M3 (I'3—2M2)+20 I My My, +M7 (I +M?)]

|in solid lines. Using the aforementioned method, we can

also obtain another three sets of solutions numerically.
We found the numerical solutions are exactly repeated
by fitting. For those with little difference, they are con-
sistent within 0.50, where o is the error from the fit. A
comparison of the results is shown in Table 1.

It is obvious that, for the case of three nonrelativis-
tic BW amplitudes with interference, if one solution is
known from the fit, the other three can be derived readily
and numerically by solving Eq. (13).

4.2 Relativistic BW amplitudes

For the case of relativistic BW amplitudes with in-
terference, the values of the parameters as one solution
are set as

M,=4.20, T, =0.09,
Mf:4.40, Ff:()l?, d)f:TC/Q,
My, =4.60, [}, =0.18, ¢, =3m/4.

The modulus of the amplitude squared of three inter-
fering resonances is |[BW,(m)+BW;(m)e'*s + BW,,(m)e'*:
and the BW amplitudes use the formats shown in
Eq. (14), where for the phase space factor we as-
sume the reaction process is ete”™ — mwrmw~J/P. That
is to say z, = \/BfFeere,/BgFie,eid’f =1 and 25 =
VBuIh __/B,I% e =—1/v/2+1/V/2i for the above
solution, where the values of BRI _ are set as 1 for
R=g, f, and h.

According to the above probability density function
and the first set of input solutions, a data sample of
100000 events is generated by using toy MC. Similarly,
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Table 1.

Comparison between the extracted solution using our mathematical method and that obtained from the

fit with three interfering simple BW functions. A data sample of 100,000 events generated by toy MC is used in

the fit.
item Sol. I (Input) Fit I Sol. IT Fit 11 Sol. III Fit 11T Sol. IV Fit IV
oy /3 1.06 2.29 2.29 3.56 3.55 4.79 4.80
bn 3mn/4 2.37 6.02 6.02 5.66 5.67 3.05 3.05
d 1 — 0.81 — 0.46 — 0.37 —
R., 1/2 0.50 -0.89 -0.89 -0.81 -0.81 0.10 0.10
I, \/5/2 0.87 1.02 1.02 -0.36 -0.35 -1.19 -1.17
Rz, -\/5/2 -0.72 1.20 1.19 0.60 0.60 -0.91 -0.91
Iz \/5/2 0.69 -0.32 -0.32 -0.43 -0.42 0.09 0.09
My 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80
Iy 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
My 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
Iy 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
My, 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25
Iy 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
g 3000? g 35005
g § oson
> £ > E
o 2000§ B 2000-
1500? 1500E
1000 1000E
5001 5005
f? 0%
Swg ] 3 000" Sol. 1v
B 3000 B 5000
c E = F
2 2500 2 4000
W 2000F W
15005 3000
1000 20001
500F 10001~
Ok ! 0: >
35 4 45 35 4 45
m
Fig. 1. (color online) The four solutions from the fit to the toy MC produced mass spectra with the three interfering

resonances included. The solid curves show the best fit and the dashed curves show the contributions from the

three nonrelativistic BW components.

Table 2. Comparison between the extracted solution using our mathematical method and that from the fit with
three interfering relativistic BW functions. A data sample of 100,000 events generated by toy MC is used in the
fit.

item Sol. T (Input) Fit I Sol. 1T Fit 11 Sol. III Fit ITI Sol. IV Fit IV

oy /2 1.57 2.63 2.63 3.44 3.44 4.50 4.50

bn 3n/4 2.36 6.14 6.14 5.12 5.12 2.62 2.62
d 1.00 — 0.77 — 0.45 — 0.35 —

R, 0.00 0.00 -1.43 -1.43 -0.98 -0.98 -0.35 -0.35

Iz, 1.00 1.00 0.80 0.80 -0.30 -0.30 -1.63 -1.63

R —1/\/5 -0.71 1.76 1.76 0.33 0.33 -1.31 -1.31

L.y 1/V2 0.71 -0.25 -0.25 -0.78 -0.78 0.75 0.75

My 4.20 4.20 4.20 4.20 4.20 4.20 4.20 4.20

Iy 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Bgfg+87 1.00 1.03 1.29 1.30 2.20 2.21 2.85 2.85
My 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40
ry 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

BfFeere* 1.00 1.02 3.46 3.45 2.29 2.28 7.94 7.94
My, 4.60 4.60 4.60 4.60 4.60 4.60 4.60 4.60
Iy, 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18

BhFethe— 1.00 1.01 4.07 4.07 1.60 1.60 6.53 6.52
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(color online) The four solutions from the fit to the toy MC produced mass spectra with the three interfering

resonances included. The solid curves show the best fit and the dashed curves show the contributions from the

three relativistic BW components.

using the method mentioned earlier, another three sets of
solutions can be found numerically, which are exactly re-
peated by fitting with the maximum likelihood method.
The comparison of the results is shown in Table 2 and
the fitted plots are shown in Fig. 2.

5 Discussion

As we found, when we need to describe a measured
distribution using three interfering resonances |g(x)+
2 f (@) + 25h(@)2/d , F(x) = f(a)/g(x) and H(z)
h(zx)/g(x) satisfy the relation of Eq. (6). If f(z), h(x),
and g(z) are widely used BW functions, it has also been
proved that such relation is exactly satisfied. In the
case of three interfering resonances there are already
four equivalent solutions with the same likelihood func-
tion minimum. Although the explicit analytical formulae

cannot be derived between different solutions, Eq. (13)
can be utilized to derive the other three solutions nu-
merically from the solution obtained by fitting. If three
resonant amplitudes take simple or relativistic BW func-
tions, two data samples generated by toy MC are used to
cross check and verify our results. For other complicated
BW functions, the relations Egs. (6), (10), (12), and (13)
still hold for F(z) and H(x). For other forms of BW
functions, with the coefficients obtained by Egs. (6) and
(10), the other solutions can be derived numerically by
using the method mentioned earlier. The obtained nu-
merical solutions agree well with those from the fit, which
justifies our method. We believe that with the help of
finding other solutions numerically, it is easy to find all
the solutions in real fits to the experimental distribution
as long as the initial values of resonant parameters are
set correctly.
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