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Anisotropic compact stars in Karmarkar spacetime

Ksh. Newton Singh1;1) Neeraj Pant2;2) M. Govender3;3)

1 Department of Physics, National Defence Academy, Khadakwasla, Pune-411023, India
2 Department of Mathematics, National Defence Academy, Khadakwasla, Pune, 411023, India

3 Department of Mathematics, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa

Abstract: We present a new class of solutions to the Einstein field equations for an anisotropic matter distribution

in which the interior space-time obeys the Karmarkar condition. The necessary and sufficient condition required for

a spherically symmetric space-time to be of Class One reduces the gravitational behavior of the model to a single

metric function. By assuming a physically viable form for the grr metric potential we obtain an exact solution of the

Einstein field equations which is free from any singularities and satisfies all the physical criteria. We use this solution

to predict the masses and radii of well-known compact objects such as Cen X-3, PSR J0348+0432, PSR B0943+10

and XTE J1739-285.
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1 Introduction

The century-old search for exact solutions of the Ein-
stein field equations began with Karl Schwarzschild ob-
taining a vacuum solution describing the exterior of a
spherically symmetric matter distribution [1]. A natural
line of pursuit would be to find an interior solution which
matched smoothly to the Schwarzschild exterior solution.
This internal solution was obtained by Schwarzschild, in
which he assumed that the internal matter content of a
spherical mass distribution was characterized by uniform
density [2]. Observations of stars and the understanding
of particle physics within dense cores necessitated the
search for more realistic solutions of the field equations.
The inclusion of pressure anisotropy, charge, bulk vis-
cosity, an equation of state, multilayered fluids and the
departure from spherical symmetry has led to the discov-
ery of hundreds of exact solutions describing relativistic
stars in the static limit [3–7]. With the discovery of the
Vaidya solution, it became necessary to model the grav-
itational collapse of radiating stars [8]. Since the star
is dissipating energy in the form of a radial heat flux,
the pressure at the boundary of the star is proportional
to the outgoing heat flux as opposed to vanishing sur-
face pressure in the non-dissipative case [9]. Neverthe-
less, static solutions also play a pivotal role in dissipative
gravitational collapse of stars as they can represent an
initial static configuration or a final static configuration

[10–12].
Relaxing the condition of a perfect fluid and allowing

for pressure anisotropy and charge within the interior of
the stellar distribution gives rise to observable and mea-
surable properties of the star. Pressure anisotropy leads
to arbitrarily large surface red-shifts [13–15] while the in-
clusion of charge results in the modification of the Buch-
dahl limit ([16]). The linear equation of state p = αρ has

been generalized from observations in theoretical particle
physics. There has been a wide spectrum of exact solu-
tions of the field equations incorporating the so-called
MIT bag model, in which the equation of state is of the
form p = αρ−B with B being the bag constant [17–
19]. These solutions successfully predicted the observed
masses and radii of compact objects with densities of the
order of 1014 g ·cm−3. With an ever growing interest in
dark energy and its successful use in cosmological mod-
els, astrophysicists have now extended the range of α in
p = αρ to include −1 < α <−1/3. This regime incorpo-
rates the so-called dark stars [20, 22]. Other exotic forms
of matter which have appeared in the literature include
the Chaplygin gas, Bose-Einstein condensates and the
Hagedorn fluid [23–27].

The notion of the four fundamental interactions be-
ing a manifestation of a single force has always attracted
the interest of researchers in both fundamental particle
physics and relativity. Higher dimensional theories of
gravity have produced rich results so far as cosmic cen-
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sorship is concerned [28–30]. Recently, there has been a
surge in exact models of stars in Einstein-Gauss-Bonnet
gravity and braneworld gravity as well as Lovelock grav-
ity [31–34]. The connection between five-dimensional
Kaluza-Klein geometries and electromagnetism has been
widely studied. Embedding of four-dimensional space-
times into higher dimensions is an invaluable tool in gen-
erating both cosmological and astrophysical models. In
this paper we utilize the Karmarkar [35] condition, which
is a necessary and sufficient condition for a spherically
symmetric line element to be of class one to generate
exact solutions of the Einstein field equations. In par-
ticular, our model incorporates anisotropic pressure and
is free from any singularities. Our results support re-
cent observations made by Refs. [36–38] for models in
embedding Class One.

2 Interior space-time

The interior of the super-dense star is assumed to be
described by the line element

ds2 = eν(r)dt2−eλ(r)dr2−r2(dθ2 +sin2 θdφ2). (1)

The energy-momentum tensor for the stellar
anisotropic fluid is

Tab = diag(ρ,−pr,−pt,−pt) , (2)

where ρ, pr and pt are the energy density, radial pressure
and tangential pressure, respectively.

The Einstein field equations for the line element (1)
are

8πρ=
1−e−λ

r2
+

λ′e−λ

r
(3)

8πpr =
ν′e−λ

r
− 1−e−λ

r2
(4)

8πpt =
e−λ

4

(

2ν′′+ν′2−ν′λ′ +
2ν′

r
− 2λ′

r

)

(5)

where primes represent differentiation with respect to the
radial coordinate r. In generating the above field equa-
tions we have utilized geometrized units where G and c
are taken to be unity. Using the Eqs. (4) and (5) we
obtain the anisotropy parameter

∆=8π(pt−pr)

=e−λ

[

ν′′

2
− λ′ν′

4
+

ν′2

4
− ν′ +λ′

2r
+

eλ−1

r2

]

. (6)

If the metric given in (1) satisfies the Karmarkar con-
dition [35] , it can represent an embedding Class One
spacetime i.e.

R1414 =
R1212R3434 +R1224R1334

R2323

(7)

with R2323 6= 0 [39]. This condition leads to a differential
equation given by

2ν′′

ν′
+ν′ =

λ′eλ

eλ−1
. (8)

On integration we get the relationship between ν and
λ as

eν =

(

A+B

∫ √
eλ−1 dr

)2

(9)

where A and B are constants of integration.
By using (9) we can rewrite (6) as

∆ =
ν′

4eλ

[

2

r
− λ′

eλ−1

] [

ν′eν

2rB2
−1

]

. (10)

3 Anisotropic stellar solution

To solve the above equation (9), we have assumed an
entirely new type of grr metric potential given by

eλ =
4(1+ar2)2

(2−ar2)2
. (11)

On integrating (9), we get

eν =

[

A+
B√
a

{√
12+3ar2

−3
√

2 tanh−1

(
√

4+ar2

√
6

)}]2

. (12)

Now using (12) and (11) in (3), (4), (10) and (5), we
get

8πρ=
3a(a2r4 +ar2 +12)

4(ar2 +1)3
(13)

8πpr =
a
√

4+ar2

(

f3(r)−f1(r)
√

4+ar2

)

4(1+ar2)2
(

f2(r)−f4(r)
) (14)

∆=

√
3a2r2(ar2 +7)

[

f4(r)−f2(r)
]−1

4(ar2 +1)3
√

ar2 +4

×
(

f6(r)−f5(r)
√

ar2 +4

)

(15)

8πpt =8πpr +∆ (16)

where

f1(r)=3A
√

ar2(ar2 +4)+
√

3Br(ar2 +16) (17)
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f2(r) =A
√

ar2(ar2 +4)+
√

3Br(ar2 +4) (18)

f3(r) =9
√

2 Br(ar2 +4)tanh−1

(
√

ar2 +4√
6

)

(19)

f4(r) =3Br
√

2ar2 +8 tanh−1

(
√

ar2 +4√
6

)

(20)

f5(r)=
√

3A
√

ar2(ar2 +4)+2Br(ar2 +7) (21)

f6(r)=3
√

6Br(ar2 +4)tanh−1

(
√

ar2 +4√
6

)

(22)

We can write the density and pressure gradients as

dρ

dr
=−3a2r(a2r4 +35)

2(ar2 +1)4
(23)

8π

dpr

dr
=− ar

√
ar2

2g7(x) (ar2 +1)3

[

3
√

2B
{

(g4(x)+g5(x)
}

tanh−1

(
√

ar2 +4√
6

)

−
√

ar2 +4
{

g1(x)+g2(x)+g3(x)
}

−g6(x)

]

(24)

8π

dpt

dr
=− a3r5

√
ar2 +4

4p7(x) (ar2 +1)
4
(ar2 (ar2 +4))

3/2

[

−3
√

2B
{

p4(x)+p5(x)
}

tanh−1

(
√

ar2 +4√
6

)

+
√

ar2 +4
{

p1(x)+p2(x)−p3(x)
}

+p6(x)

]

(25)

Where (26)

g1(x) = a3r4

[

3A2

√

ar2(ar2 +4)

(ar2−2)2
+3B2r2

√

ar2(ar2 +4)

(ar2−2)2
+5

√
3ABr

]

−708B2

√

ar2(ar2 +4)

(ar2−2)2
(27)

g2(x) = a2r2

[

15A2

√

ar2(ar2 +4)

(ar2−2)2
+81B2r2

√

ar2(ar2 +4)

(ar2−2)2
+67

√
3ABr

]

(28)

g3(x) = 2a

[

−21A2

√

ar2(ar2 +4)

(ar2−2)2
+90B2r2

√

ar2(ar2 +4)

(ar2−2)2
+103

√
3ABr

]

(29)

g4(x) = 24ar

[

3
√

3Br

√

ar2(ar2 +4)

(ar2−2)2
+7A

]

−412
√

3B

√

ar2(ar2 +4)

(ar2−2)2
(30)

g5(x) = a3r5

[

5
√

3Br

√

ar2(ar2 +4)

(ar2−2)2
+6A

]

+3a2r3

[

19
√

3Br

√

ar2(ar2 +4)

(ar2−2)2
+22A

]

(31)

g6(x) = 54B2
{

a2r4 +5ar2−14
}

√

ar2(ar2 +4)2

(ar2−2)2

[

tanh−1

(
√

ar2 +4√
6

)]2

(32)

g7(x) =

[

A
√

ar2(ar2 +4)+
√

3Br(ar2 +4)−3Br
√

2ar2 +8 tanh−1

(
√

ar2 +4√
6

)]2

(33)

p1(x) = 9a3r4

[

−4A2

√

ar2(ar2 +4)

(ar2−2)2
+22B2r2

√

ar2(ar2 +4)

(ar2−2)2
+23

√
3ABr

]

015103-3



Chinese Physics C Vol. 41, No. 1 (2017) 015103

+a5Br9

[

6Br

√

ar2(ar2 +4)

(ar2−2)2
+
√

3A

]

+10368B2

√

ar2(ar2 +4)

(ar2−2)2
(34)

p2(x)=2a4r6

[

12A2

√

ar2(ar2 +4)

(ar2−2)2
+39B2r2

√

ar2(ar2 +4)

(ar2−2)2
+23

√
3ABr

]

−4a

[

−168A2

√

ar2(ar2 +4)

(ar2−2)2
+795B2r2

√

ar2(ar2 +4)

(ar2−2)2
+776

√
3ABr

]

(35)

p3(x)=2a2r2

[

180A2

√

ar2(ar2 +4)

(ar2−2)2
+879B2r2

√

ar2(ar2 +4)

(ar2−2)2
+337

√
3ABr

]

(36)

p4(x)=
√

3a5Br10

√

ar2(ar2 +4)

(ar2−2)2
+4a4r7

[

11
√

3Br

√

ar2(ar2 +4)

(ar2−2)2
+12A

]

+6208
√

3B

√

ar2(ar2 +4)

(ar2−2)2
(37)

p5(x)=a3r5

[

115
√

3Br

√

ar2(ar2 +4)

(ar2−2)2
+216A

]

−64a2r3

[

17
√

3Br

√

ar2(ar2 +4)

(ar2−2)2
+9A

]

−4ar

[

439
√

3Br

√

ar2(ar2 +4)

(ar2−2)2
+672A

]

(38)

p6(x)=216B2
{

(2a3r6−3a2r4−30ar2 +56
}

√

ar2(ar2 +4)2

(ar2−2)2

[

tanh−1

(
√

ar2 +4√
6

)]2

(39)

p7(x)=

[

A

√

ar2(ar2 +4)

(ar2−2)2
(ar2−2)+

√
3Br(ar2 +4)−3Br

√
2ar2 +8

×tanh−1

(
√

ar2 +4√
6

)]2

. (40)

These density and pressure gradients are represented
graphically in Fig. 6.

Using the relationship between eλ and mass m(r)
i.e.

e−λ = 1− 2m

r
(41)

and (3) we get

m(r) = 4π

∫ r

0

ρr2dr =
3ar3(ar2 +4)

8(ar2 +1)2
(42)

4 Conditions for physical viability of the

solutions

The following conditions are to be fulfilled by the
solution in order to represent a physically viable config-
uration.

1) The solution should be free from physical and

geometric singularities, i.e. it should yield finite and
positive values of the central pressure, central den-
sity and nonzero positive value of eν |r=0 and eλ|r=0

= 1.
2) The causality condition should be obeyed i.e. ve-

locity of sound should be less than that of light through-
out the model. In addition to the above the veloc-
ity of sound should be decreasing towards the surface

i.e.
d

dr

dpr

dρ
< 0 or

d2pr

dρ2
> 0 and

d

dr

dpt

dρ
< 0 or

d2pt

dρ2
> 0

for 0 6 r 6 rb i.e. the velocity of sound is increasing
with the increase of density and it should be decreasing
outwards.

3) The adiabatic index, γ =
ρ+pr

pr

dpr

dρ
for realistic

matter should be γ > 4/3.
4) The red-shift z should be positive, finite and mono-
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tonically decreasing in nature with the increase of the
radial coordinate.

5) For a stable anisotropic compact star, 0 < |v2
t−v2

r |6
1 must be satisfied, [40].

6) Anisotropy must be zero at the center and increas-

ing outward.

5 Properties of the solution

The central values of pr, pt, ρ and the Zeldovich’s
condition can be written as

8πprc = 8πptc =
a

2

[

−2
√

a A+4
√

3 B−6
√

2 B tanh−1(
√

2/3)

]

×
[

36
√

2 B tanh−1(
√

2/3)−32
√

3 B−12
√

a A

]

> 0 (43)

8πρc =9a > 0; ∀ a > 0 (44)

prc

ρc

=
1

18

[

−2
√

a A+4
√

3 B−6
√

2 B tanh−1(
√

2/3)

]

×
[

36
√

2 B tanh−1(
√

2/3)−32
√

3 B−12A
√

a

]

6 1. (45)

Now using the two constraints on A, B and a given
in (43) and (45), we get a final form as

8
√

3−9
√

2 tanh−1(
√

2/3)

3
√

a
<

A

B

6
13

√
3−18

√
2 tanh−1(

√

2/3)

6
√

a
. (46)

Now the velocity of sound within the stellar object
can be found as

v2
r =

dpr/dr

dρ/dr
, v2

t =
dpt/dr

dρ/dr
. (47)

The relativistic adiabatic index and the compression
modulus is given by

Γr =
ρ+pr

pr

dpr

dρ
; Γt =

ρ+pt

pt

dpt

dρ
. (48)

For a static configuration at equilibrium Γr has to be
more than 4/3.

The generalized Tolman-Oppenheimer-Volkoff
(TOV) equation was contributed by [41] as

−Mg(ρ+pr)

r2
e(λ−ν)/2− dpr

dr
+

2(pt−pr)

r
= 0 (49)

provided

Mg(r)=
1

2
r2ν′e(ν−λ)/2. (50)

The above equation (49) can be written in terms of
balanced force equation due to anisotropy (Fa), gravity
(Fg) and hydrostatic (Fh) i.e.

Fg +Fh +Fa = 0. (51)

Here

Fg =−Mg(ρ+pr)

r2
e(λ−ν)/2 (52)

Fh =−dpr

dr
(53)

Fa =
2(pt−pr)

r
. (54)

The generalized TOV equation (51) can be represent by
a figure showing the forces that are balanced to each Fig.
13.

6 Boundary conditions

We assume that the exterior spacetime is the
Schwarzschild solution, which has to match smoothly
with the interior solution and is given by

ds2 =

(

1− 2M

r

)

dt2−
(

1− 2M

r

)−1

dr2

−r2(dθ2 +sin2 θdφ2). (55)

By matching the interior solution (1) and exterior
solution (55) at the boundary r = rb we get

eνb =1− 2M

rb

=

[

A+
B√
a

{

√

12+3ar2
b −3

√
2

×tanh−1

(
√

4+ar2
b

6

)

}]2

(56)

e−λb =1− 2M

rb

=

(

2−ar2
b

)2

4
(

1+ar2
b

)2 (57)

pr(rb)=0. (58)
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Fig. 1. Variation of metric potential with radius.

Fig. 2. Variation of density with radius.

Fig. 3. Variation of pressures with radius.

Fig. 4. Variation of pressure to density ratios with radius.

Fig. 5. Variation of anisotropy with radius.

Fig. 6. Variation of pressure and density gradients
with radius.

Fig. 7. Variation of square of sound speeds with radius.

Fig. 8. Variation of stability factor with radius.

Fig. 9. Variation of energy conditions with radius.

0 2 4 6 8
r

4

6

8

10

Γ
i

Γt

Γr

Fig. 10. Variation of adiabatic index with radius.
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Table 1. Optimization of masses, radii, Buchdahl limit, surface redshift and comparison with observed values.

stars a/km−2 rb/km M/M� 2M/rb zs Mobs/M� Robs/km type Ref.

Cen X-3 0.00147 8.7 1.21 0.278 0.177 1.21 ± 0.21 – NS [42]

PSR J0348+0432 0.000751 13 2.01 0.309 0.203 2.01 13±2 NS [43]

PSR B0943+10 0.00077 2.6 0.02 0.0155 0.008 0.02 2.6 QS [44]

XTE J1739-217 0.000934 10.9 1.51 0.277 0.176 1.51 10.9 QS [45]

Fig. 11. Variation of mass with radius.

Fig. 12. Variation of surface redshift with radius.

Fig. 13. Counter-balancing of three different forces
acting in an anisotropic fluid sphere.

Using the boundary condition (56–58), we get

A=
2−ar2

b

4(1+ar2
b )

− B√
a

[

3
√

2 tanh−1

(
√

4+ar2
b

6

)

−
√

12+3ar2
b

]

, (59)

2M

rb

=1−
(

2−ar2
b

)2

4
(

1+ar2
b

)2 , (60)

A

B
=

[

3ar2
b

√

ar2
b +4

√

ar2
b (ar2

b +4)

(ar2
b −2)2

−6
√

ar2
b +4

√

ar2
b (ar2

b +4)

(ar2
b −2)2

]−1

×
[

36
√

2 rb tanh−1

(
√

ar2
b +4

6

)

+9
√

2 ar3
b

tanh−1

(
√

ar2
b +4

6

)

−16
√

3 rb

√

ar2
b +4

−
√

3ar3
b

√

ar2
b +4

]

. (61)

Now the gravitational red-shift at the stellar surface
is given by

zs = e−νb/2−1 =
2(1+ar2

b)

2−ar2
b

−1. (62)

For a physically stable static configuration, the en-
ergy condition, such as Null Energy Condition (NEC),
Weak Energy Condition (WEC), Strong Energy Condi-
tion (SEC) and Dominant Energy Condition, needs to
be satisfied throughout the interior region i.e.

ρ > 0; ρ−pr > 0; ρ−pt > 0;

ρ−pr −2pt > 0; ρ > (|pr|, |pt|). (63)

7 Results and conclusions

It has been observed that the physical parameters
(

pr, pt, ρ, pr/c2ρ, pt/c2ρ, v2
r , v2

t

)

are positive at the
center and within the limit of a realistic equation of state
and monotonically decreasing outward (Figs. 2−4, 7).
However the metric potentials, anisotropy, surface red-
shift, mass-function and Γ are increasing outward, which
is necessary for a physically viable configuration (Figs.
1, 5, 10–12).

Furthermore, our presented solution satisfies all
the energy conditions which are needed by a physi-
cally possible configuration. The Strong Energy Condi-
tion (SEC), Weak Energy Condition (WEC), Null En-
ergy Condition (NEC) and Dominant Energy Condition
(DEC) are shown in Fig. 9. The stability factor v2

t −v2
r
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must lie in between −1 and 0 for a stable and be-
tween 0 and 1 for an unstable configuration. Therefore
the presented solution satisfies the stability condition
(Fig. 8).

The decreasing nature of pressures and density is fur-
ther justified by their negativity of their gradients, Fig.
6. The solution represents a static and equilibrium con-
figuration as the forces acting on the fluid sphere counter-
balance each other. For an anisotropic stellar fluid in
equilibrium the gravitational force, the hydro-static pres-

sure and the anisotropic force are acting through the
TOV-equation and counter-balancing each other, Fig.
13.

Using this solution, we have presented some models
of well-known compact stars and compare their observed
masses and radii with our calculated values, as shown
in Table 1. Our presented models are in good agree-
ment with the experimentally observed values, so the
presented solution might have astrophysical significance
in the future.

References

1 K. Schwarzschild, Math. Phys., 189: (1916a)
2 K. Schwarzschild, Math. Phys., 424: (1916b)
3 R. L. Bowers, E. P. T. Liang, Astrophys. J., 188: 657–665

(1974)
4 J. D. Bekenstein, Phys. Rev. D, 4: 2185–2190 (1971)
5 S. D. Maharaj, R. Maartens, Gen. Relativ. Gravit., 21: 899–

905 (1989)
6 R. Tikekar and K. Jotania, Int. J. Mod. Phys. D, 14: 1037–

1048 (2005)
7 M. Esculpi et al, Gen. Relativ. Gravit., 39: 633–652 (2007)
8 P. C. Vaidya, Proc. Ind. Acad. Sci. A, 33: 264–276 (1951)
9 N. O. Santos, Mon. Not. R. Astron. Soc., 216: 403–410 (1985)

10 W. B. Bonnor, A. K. G. de Oliveira, and N. O. Santos, Phys.
Rep., 181: 269–326 (1989)

11 R. Sharma and R. Tikekar, Pramana J. of Phys., 79: 501-509
(2012)

12 M. Govender et al, Astrophys. Space Sci., 361: 33 (2016)
13 P. Bhar, Astrophys. Space Sci., 356: 309–318 (2015)
14 P. Bhar, Eur. Phys. J. C, 75: 123 (2015)
15 K. N. Singh and N. Pant, Astrophys. Space Sci., 358: 44 (2015)
16 H. Andreasson, J. Phys.: Conference Series, 189: 012001–

0120013 (2009)
17 P. Takisa Mafa, S. Ray, S. D. Maharaj, Astrophys. Space Sci.,

350: 733 (2014)
18 S. A. Ngubelanga, S. D. Maharaj, and S. Ray, Astrophys. Space

Sci., 357: 74 (2015)
19 M. Govender and S. Thirukkanesh, Astrophys. Space Sci., 358:

16–22 (2015)

20 P. Bhar and F. Rahaman, Euro. Phys. J. C, 75: 41 (2015)
22 F.S.N. Lobo, Class. Quantum Grav., 23: 1525 (2006)
23 F. Rahaman et al, Euro. Phys. J. C, 72: 2071 (2012)
24 F. Rahaman et al, Gen. Relativ. Gravit., 44: 107–124 (2012)
25 P. Bhar, Astrophys. Space Sci., 359: 41 (2015)
26 P. H. Chavanis, T. Harko, Phys. Rev. D, 86: 064011 (2012)
27 T. Harko, Phys. Rev. D, 68: 064005 (2003)
28 N. Dadhich et al, Phys. Rev. D, 88: 084024 (2013)
29 P. S. Joshi and D. Malafarina, Int. J. Mod. Phys. D, 20: 2641–

2729 (2011)
30 N. Dadhich et al, Phys.Lett. B, 711: 196–198 (2012)
31 S. Hansraj et al, Eur. Phys. J. C, 75: 277 (2015)
32 S. D. Maharaj et al, Phys. Rev. D, 91: 084049 (2015)
33 N. Dadhich et al, Phys. Rev. D, 93: 044072 (2016)
34 A. Banerjee et al, Euro. Phys. J. C, 76: 34 (2016)
35 K. R. Karmarkar, Proc. Indian. Acad. Sci. A, 27: 56-60 (1948)
36 K. N. Singh and N. Pant, Astrophys. Space Sci., 361: 177

(2016)
37 K. N. Singh et al, Astrophys. Space Sci., 361: 173 (2016)
38 S. Thakadiyil and M. K. Jasim, Int. J. Theor. Phys., 52: 3960–

3964 (2013)
39 S.N. Pandey and S. P. Sharma, Gene. Relativ. Gravit., 14:

113–115 (1981)
40 L. Herrera and N. O. Santos, Phys. Rep., 286: 53–130 (1997)
41 J. Ponce de Leon, Gen. Relativ. Gravit., 19: 797–807 (1987)
42 T. D. C. Ash et al, Gen. Relativ. Gravit., 307: 357–364 (1999)
43 J. Antoniadis et al, Science, 340: 1233232 (2013)
44 Y. L. Yue et al, Astrophys. J., 649: L95–L98 (2006)
45 C. M. Zhang et al, Publ. Astron. Soc. Pac., 119: 1108–1113

(2007)

015103-8


