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Study of hadrons using the Gaussian functional method

in the O(4) linear σ model *
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Abstract: We study properties of hadrons in the O(4) linear σ model, where we take into account fluctuations of

mesons around their mean field values using the Gaussian functional (GF) method. In the GF method we calculate

dressed σ and π masses, where we include the effect of fluctuations of mesons to find a better ground state wave

function than the mean field approximation. Then we solve the Bethe-Salpeter equations and calculate physical σ

and π masses. We recover the Nambu-Goldstone theorem for the physical pion mass to be zero in the chiral limit.

The σ meson is a strongly correlated meson-meson state, and seems to have a two meson composite structure. We

calculate σ and π masses as functions of temperature for both the chiral limit and explicit chiral symmetry breaking

case. We get similar behaviors for the physical σ and π masses as the case of the mean field approximation, but the

coupling constants are much larger than the values of the case of the mean field approximation.
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1 Introduction

The linear σ model is used for the O(4) symmetry
case to discuss chiral symmetry breaking and the ap-
pearance of Nambu-Goldstone bosons. The mean field
approximation (MFA) is often used for this discussion,
but the MFA may not be justified for the case of large
coupling constant. An improvement of MFA is achieved
by introducing fluctuations around the mean field values
using the Gaussian functional (GF) method [1]. This
method corresponds to the CJT method [2] and is some-
times called Hartree-Fock approximation for bosons.
The ground state energy is obtained by solving the
Schrödinger equation with the trial Gaussian wave func-
tional in the GF method. The mean field equation for the
field vacuum expectation values and the mass-gap equa-
tions for the dressed meson masses are determined by the
minimization condition of the energy, i.e., the one- and

two-point Green function Schwinger-Dyson (SD) equa-
tions.

The resulting dressed mass of the Nambu-Goldstone
boson is, however, not zero, even when the chiral sym-
metry is spontaneously broken in the chiral limit. This
problem was studied by several authors in the GF frame-
work [3–8]. In order to recover the Nambu-Goldstone
theorem, we have to solve the Bethe-Salpeter (BS) equa-
tions (or four-point Green function SD equations) [9, 10].
The physical meson masses are defined as the poles of
the scattering matrices, while the dressed masses in the
GF mass-gap equations are considered as single meson
masses in the meson spectrum. The single meson spec-
trum corresponds to the single particle spectrum of nu-
cleons obtained in the Hartree-Fock (HF) approximation
in nuclear physics. We should then introduce the Ran-
dom Phase approximation (RPA) after the HF procedure
in order to recover the translational symmetry and the
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particle-hole excitation spectrum for nuclear many-body
system. The Nambu-Jona-Lasinio (NJL) model uses
the same procedure for the mass generation of fermions
and the appearance of the zero mass pseudo-scalar
bosons [11]. This whole procedure was later studied by
Okopińska using the optimized expansion (OE) method
for the effective action (potential), where the second or-
der derivatives of the classical fields provide the physical
masses of the Nambu-Goldstone bosons [12, 13]. She
was able to derive the BS equations in the OE method
and showed that the Nambu-Goldstone theorem is recov-
ered. Nakamura and Dmitrašinović studied this prob-
lem in detail using the GF+BS methods for the O(4)
case [9]. They did not, however, give numerical results
for physical sigma and pion masses to compare with ex-
perimental values [14]. Tsue et al. formulated the BS
equations using the linear response theory [7]. Lenaghan
et al. studied the SU(3) case using the CJT method at
finite temperature [15]. However, they did not solve the
BS equations for mesons. It remains to be studied that
the Nambu-Goldstone boson masses vanish in the chiral
limit at zero and finite temperatures and the scalar me-
son masses are reasonable in energy and their property,
when the chiral symmetry is spontaneously broken both
for O(4) and SU(3) cases.

There is another line of thought to overcome the
problem of the Nambu-Goldstone theorem, following de-
tailed studies of the linear σ model in the CJT method
by Nemoto et al. [16] and Markó et al. [17]. Knowing
that the physical meson masses are to be obtained by
the second order derivatives of the CJT effective action,
the CJT effective action to be minimized is expressed
in terms of the physical meson masses by carefully ex-
amining the renormalization procedure. This method is
further developed in the form of a symmetry-improved
CJT (SI-CJT) action proposed recently by Pilaftsis and
Teresi [18]. In the SI-CJT method, instead of the min-
imization equation of the two-loop CJT action in terms
of the mean field, a condition of making the Goldstone-
boson mass being zero is imposed in the chiral limit. Us-
ing the SI-CJT method, they calculated the phase transi-
tion and the variation of the Higgs and Goldstone bosons
at finite temperature for the O(2) case. This SI-CJT
method was then used for the O(4) case by Mao [19].
Qualitatively similar results were obtained for the Higgs
and Goldstone masses at finite temperature as those of
the MFA and the order of the phase transition at finite
temperature turned out to be second order. The linear σ

model at large N limit was studied using the CJT model
by Petropoulos [20], where the phase transition was of
second order, and the order of the phase transition was
generally studied by Ogure and Sato [21]. Chiku and
Hatsuda studied the meson properties at finite temper-

ature in an optimized perturbation theory using order
by order renormalization scheme [22]. In this case the
order of the phase transition is first order opposing the
case of the SI-CJT method. Roh and Matsui studied
the chiral phase transition at finite temperature in the
one-loop level effective potential [23]. The O(4) linear
σ model was studied by Tsue and Matsuda in the line
similar to the present study [8]. There are renewed in-
terests on this subject recently raised by the improved
CJT method [17, 19] and it is important to study further
the GF+BS method on the order of phase transition and
compare with the improved CJT approach.

In this paper we shall study hadron properties us-
ing the GF method for the O(4) linear σ model, and
then use the BS equations to demonstrate the Nambu-
Goldstone theorem in the chiral limit [24–31]. To this
end, we consider the O(4) linear σ model as a low energy
effective theory of QCD, and introduce the cut-off mo-
mentum to regularize the GF+BS equations. We follow
the recent study of the QCD Lagrangian using the Cho-
Fadeev-Niemi (CFN) variables, where the high energy
gluon mode acquires mass around 1–2 GeV and the NJL
Lagrangian with confinement is obtained by integrating
over the high energy mode [32]. The O(4) linear σ model
is then obtained by bosonization of the NJL Lagrangian
using the auxiliary bosons for quark-antiquark compos-
ites with and without the confinement effect [33, 34]. We
shall see the properties of mesons after solving the BS
equations with a reasonable range of parameters in the
linear σ model Lagrangian. We discuss the recovery of
the chiral symmetry at finite temperature and the behav-
ior of sigma and pion masses for both the chiral limit and
explicit chiral symmetry breaking case. Before studying
the interesting but complicated flavor SU(3) case [10],
it is a reasonable step to study the flavor SU(2) case so
that we know the amount of shifts of meson masses due
to the BS equations and the interaction strengths in the
linear σ model Lagrangian.

This paper is organized as follows. In Section 2 we
briefly introduce the O(4) linear σ model and use the
GF method to calculate the dressed masses of the σ and
π mesons, denoted as Mσ and Mπ. These results are
then used in Section 3 to calculate their physical masses
using the Bethe-Salpeter equations, denoted as mσ and
mπ. The single channel BS equation of the σ-π scatter-
ing T -matrix gives the physical π mass, and the coupled-
channel BS equations of the σ-σ and π-π scattering T -
matrix give the physical σ mass. The numerical analyses
are made for the both the chiral limit and explicit chi-
ral symmetry breaking case, both at zero temperature
in Section 4, and at finite temperature in Section 5. A
summary of this work is presented in Section 6.
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2 Gaussian functional method

The Lagrangian density of the O(4) linear σ model is

L =
1

2
(∂µφ)

2−V (φ2), (1)

where φ=(φ0, φ1, φ2, φ3)=(σ, ~π) is a column vector and
the potential V (φ2) is

V (φ2) = −1

2
µ2

0φ
2+

λ0

4
(φ2)

2
, (2)

which contains two parameters: the mass µ0 and the
coupling constant λ0.

The chiral symmetry can be both explicitly and spon-
taneously broken. The explicitly broken case can be ex-
pressed by adding the following term:

LχSB=−HχSB=εσ. (3)

This expression is suggested by the underlying Nambu-
Jona-Lasinio (NJL) model, which is caused by the bare
quark mass [11, 34]. In the MFA, we introduce a fluctu-
ation field s≡σ−〈σ〉0B and express the potential as,

V (σ,~π) =
1

2
(m2

σBs2+m2
πB~π2)+λ0vBs(s2+~π2)

+
λ0

4
(s2+~π2)

2
, (4)

where the vacuum expectation value 〈σ〉0B and masses
of the σ and π mesons of the corresponding fluctuation
fields are:

〈σ〉0B = vB=fπB=− ε

µ2
0

+λ0

v3
B

µ2
0

, (5)

m2
σB = −µ2

0+3λ0f
2
πB, (6)

m2
πB = −µ2

0+λ0f
2
πB=

ε

vB

. (7)

From Eq. (7), we find that the Nambu-Goldstone theo-
rem is fulfilled in the chiral limit as the pion mass mπB

goes to zero for ε→0.
The MFA does not take into account radiative correc-

tions and fluctuations around the mean fields, even for
the case of large coupling constant. A better and nat-
ural method is the Gaussian functional method to treat
fluctuations around the mean fields [1, 9]. We use the
following Gaussian ground state wave functional:

Ψ0[φ] = N exp
(

−1

4

∫
dxdy[φi(x)−〈φi(x)〉]

×G−1
ij (x,y)[φj(y)−〈φj(y)〉]

)

, (8)

where 〈φi〉 is the vacuum expectation value of the i-th
field (i = 0,··· ,3), and we define the meson propagators
as

Gij(x,y)=
1

2
δij

∫
d3k

(2π)3
1

√

k2+M 2
i

eik·(x−y). (9)

We use the gap equations for the dressed σ and π masses,
denoted as Mσ ≡Mi=0 and Mπ ≡Mi=1,2,3, respectively.
Here the “dressed” means that we still need to use
the Bethe-Salpeter equations to calculate their physical
masses, which will be done in the next section. The
Hamiltonian is written as

H =

∫
dyδ(y−x)

(

−1

2

δ2

δφi(x)φi(y)

+
1

2
∇xφi(x)∇yφi(y)+V (φ2)+HχSB

)

. (10)

We write down the vacuum (ground-state) energy
density:

E(Mi,〈φi〉) = −ε〈φ0〉−
1

2
µ2

0〈φ〉2+λ0

4
[〈φ〉2]2

+
∑

i

[

I1(Mi)−
1

2
µ2

0I0(Mi)−
1

2
M 2

i I0(Mi)

]

+
λ0

4

[

6
∑

i

〈φi〉2I0(Mi)+2
∑

i6=j

〈φi〉2I0(Mj)

+3
∑

i

I2
0 (Mi)+2

∑

i<j

I0(Mi)I0(Mj)

]

, (11)

where the two integrations I0(Mi) and I1(Mi) are:

I0(Mi) =
1

2

∫
d3k

(2π)3
1

√

k2+M 2
i

= i

∫
d4k

(2π)4
1

k2−M 2
i +iε

, (12)

I1(Mi) =
1

2

∫
d3k

(2π)3

√

k2+M 2
i

= − i

2

∫
d4k

(2π)4
log(k2−M 2

i +iε)+const. (13)

The field vacuum expectation value 〈φi〉 and dressed
π and σ masses can be obtained by the minimization con-
dition, i.e., by varying the energy density (11) with re-
spect to the vacuum expectation values 〈φi〉 and dressed
meson masses Mi, respectively,

(

∂E(Mi,〈φi〉)
∂〈φi〉,Mi

)

min

=0, for i=0···3. (14)

These energy minimization conditions provide us with
the following equations, which express the behaviors of
spontaneous symmetry breaking in the Gaussian func-
tional method:

〈φ0〉 = v, (15)

〈φi〉 = 0 for i=1,2,3, (16)

µ2
0 = − ε

v
+λ0 [v

2+3I0(Mσ)+3I0(Mπ)], (17)

M 2
σ

= −µ2
0+λ0 [3v2+3I0(Mσ)+3I0(Mπ)], (18)

M 2
π

= −µ2
0+λ0 [v2+I0(Mσ)+5I0(Mπ)]. (19)
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Note that Eq. (17) corresponds to the one-point Green
function SD equation as shown in Fig. 1, and Eqs. (18)
and (19) correspond to the two-point Green function SD
equation as shown in Fig. 2.

Fig. 1. The diagrammatic expression of the one-
point Green function Schwinger-Dyson equation.
The thin solid line denotes the bare meson fields,
the bold solid line is the dressed meson fields, the
shaded blob together with the bold line is the vac-
uum expectation values of the field, and the solid
dot in the interaction of the four lines denotes the
bare four-point vertex. The diagrams are explic-
itly multiplied by their symmetry factors.

Fig. 2. The diagrammatic expression of the two-
point Green function Schwinger-Dyson equation
with their symmetry factors.

The latter two equations can be further simplified by
inserting the third equation (17):

M 2
σ

=
ε

v
+2λ0v

2, (20)

M 2
π

=
ε

v
+2λ0 [I0(Mπ)−I0(Mσ)]. (21)

These two equations are convenient to obtain the dressed
meson masses Mσ and Mπ, when we know the sigma
mean field value v ≡〈φ0〉. From Eq. (21), we find that
the Nambu-Goldstone theorem is not trivially fulfilled in
the chiral limit any more as the pion mass Mπ does not
simply (naturally) go to zero for ε→0. However, if one
solves the Bethe-Salpeter equations using the property of
the polarization integral at zero energy (see Eq. (39)) and
calculates the physical pion mass, the Nambu-Goldstone
theorem is recovered. This has been verified for both the
O(4) and SU(3) cases [9, 10].

3 Bethe-Salpeter equation

In the previous section we have used the GF method
to calculate the dressed σ and π masses, Mσ and Mπ. To
calculate their physical masses, mσ and mπ, we still need
to solve BS equations, which correspond to find masses
of the fluctuation fields. The single channel BS equation
of the σ-π scattering gives the physical pion mass mπ

and the coupled-channel BS equations of σ-σ and π-π
scattering give the physical σ mass mσ. This method
corresponds to the second order variation of the effec-
tive potential in terms of the fluctuation fields [13]. We
note that by using the BS equation for the pseudoscalar
fields the Nambu-Goldstone theorem can be fulfilled in
the chiral limit due to the property of the polarization
integral at zero energy (39) [9, 10].

3.1 Single channel σ-π scattering

The single channel Bethe-Salpeter equation for the σ-
π scattering gives the physical π mass. To do this, first
we write the interaction kernel with the invariant energy
s=p2 in this channel:

Vσπ→σπ(s) = 2λ0

[

1+

(

2λ0v
2

s−M 2
π

)]

, (22)

which is shown diagrammatically in Fig. 3.
With this interaction kernel we can get the T -matrix

Tσπ→σπ(s) of the total four-point scattering amplitude
T (s, t, u) as

Tσπ→σπ(s)

= Vσπ→σπ(s)+Vσπ→σπ(s)Gσπ→σπ(s)Tσπ→σπ(s), (23)

which is shown diagrammatically in Fig. 4.

Fig. 3. The diagrammatic expression of the inter-
action kernel entering the Bethe-Salpeter equa-
tion.

Fig. 4. The diagrammatic expression of the Bethe-
Salpeter equation (or four-point Green function
Schwinger-Dyson equation) with the T -matrix
and the interaction kernel. All lines represent the
dressed fields.
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The polarization function for meson masses is

Gσπ→σπ(s)

= i

∫
d4k

(2π)4
1

[k2−M 2
σ
+iε][(k−p)2−M 2

π
+iε]

. (24)

The solution of Eq. (23) is simply expressed as

Tσπ→σπ(s)=
Vσπ→σπ(s)

1−Vσπ→σπ(s)Gσπ→σπ(s)
. (25)

The energy s, where the T -matrix diverges, corresponds
to the pole condition:

1−Vσπ→σπ(s)Gσπ→σπ(s)=0. (26)

One can verify the Nambu-Goldstone theorem that the
pseudoscalar meson has a zero mass in the chiral limit us-
ing this Bethe-Salpeter equation together with the mass
gap Eq. (17)–(19) listed in Section 2 and the property of
the polarization integral at zero energy (39). This has
been done in Refs. [9, 10]. In this paper we shall show
this again numerically in Section 4.

3.2 Coupled channel σ-σ and π-π scattering

The coupled channel Bethe-Salpeter equations of the
σ-σ and π-π scattering give the physical σ mass. To do
this, first we write the interaction kernels in these chan-
nels:

V =







Vσσ→σσ Vσσ→ππ

Vππ→σσ

1

3
Vππ→ππ







= 2λ0













3

[

1+3
2λ0v

2

s−M 2
σ

] [

1+3
2λ0v

2

s−M 2
σ

]

[

1+3
2λ0v

2

s−M 2
σ

]

1

3

[

5+3
2λ0v

2

s−M 2
σ

]













, (27)

where we have used the matrix form. With this interac-
tion kernel we get the T -matrices T (s) also in the matrix
form:

T = V +
1

2
V GT , (28)

where

T =







Tσσ→σσ Tσσ→ππ

Tππ→σσ

1

3
Tππ→ππ






, (29)

G =

(

Gσσ→σσ 0

0 3Gππ→ππ

)

. (30)

The polarization functions Gσσ→σσ and Gππ→ππ are given
by

Gaa→aa(s)

= i

∫
d4k

(2π)4
1

[k2−M 2
a +iε][(k−p)2−M 2

a +iε]
. (31)

Here, a denotes σ and π. The solution to the matrix
Eq. (28) is written in the matrix form:

T =

(

1−1

2
V G

)−1

V , (32)

As discussed in Ref. [9], the discriminant of this equation
can be simplified to be roots of

(s−M 2
σ
)T (s)=0, (33)

where

T (s) = 1+6λ0Gσσ→σσ(s)Gππ→ππ(s)Vσσ→ππ(s)

−1

2
(Vσσ→σσ(s)Gσσ→σσ(s)

+Vππ→ππ(s)Gππ→ππ(s)). (34)

4 Numerical results

In order to understand the GF+BS method, we first
study the zero temperature case in this section, and the
finite temperature case will be studied in the next sec-
tion. Moreover, in this section we first study the chiral
limit (ε=0) and then study the explicit chiral symmetry
breaking case (ε 6=0).

Here we give the general form of the necessary three-
dimensional integrations, including the temperature T =
1/β. We use the Matsubara formalism. The zero tem-
perature integrals can be simply obtained by taking the
limit T → 0. First we write integrals for the Gaussian
functional method in Eqs. (12) and (13), including the
temperature T =1/β:

I0(Ma,T ) = −T
∑

n

∫
d3k

(2π)3
1

(iωn)2−ω2
a

=

∫
d3k

(2π)3
1

ωa

(

1

2
+

1

eωaβ−1

)

, (35)

I1(Ma,T ) = −T
∑

n

∫
d3k

(2π)3
ln((iωn)2−ω2

a)

=

∫
d3k

(2π)3
1

2
[ωa+T ln(1−e−ωaβ)], (36)

where ωa =
√

k2+M 2
a and the Matsubara frequencies

ωn=2πnT .
We write polarization integrals for the Bethe-Salpeter

Eqs. (24) and (31), also including the temperature T =
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1/β:

Gσπ→σπ(s,T ) =

∫
d3k

(2π)3

[

1

2ωσ[(ωσ+
√

s)2−ω2
π
]

+
1

2ωπ[(ωπ−
√

s)2−ω2
σ
]

+
1

2ωσ

(

1

(ωσ−
√

s)2−ω2
π

+
1

(ωσ+
√

s)2−ω2
π

)

1

eωσβ−1

+
1

2ωπ

(

1

(ωπ+
√

s)2−ω2
σ

1

e(ωπ+
√

s)β−1

+
1

(ωπ−
√

s)2−ω2
σ

1

e(ωπ−
√

s)β−1

)]

,(37)

Gaa→aa(s,T ) =

∫
d3k

(2π)3

[

1

ωa(s−4ω2
a)

(

1+
1

eωaβ−1

)

+
1

2ωa

√
s

(

1√
s+2ωa

1

e(ωa+
√

s)β−1

+
1√

s−2ωa

1

e(ωa−
√

s)β−1

)]

, (38)

where ωσ =
√

k2+M 2
σ
, ωπ =

√

k2+M 2
π
. They satisfy the

following relations:

Gσπ→σπ(s,T )
Mσ→Ma,Mπ→Ma−−−−−−−−−−−→Gaa→aa(s,T ),

Gσπ→σπ(s,T )
s→0−−→ I0(Mσ,T )−I0(Mπ,T )

M 2
σ
−M 2

π

. (39)

We show explicitly the Nambu-Goldstone theorem
in Eq. (39) for the GFM case. We note that this is
an equation relating one-particle loop and two-particle
loop. There may be similar equations relating these loops
to multi-particle loops which can be important to re-
cover the Nambu-Goldstone theorem when including the
higher-order effects. We note that Eq. (39) is important
to recover the Nambu-Goldstone theorem when solving
Bethe-Salpeter equations [9, 10]. This means that the
above relation of Gσπ→σπ(s,T ) with I0(Mσ,T )−I0(Mπ,T )
should not be broken in any regularization and renormal-
ization procedures.

These loop integrals can be separated into two parts:
one part contains the temperature T , that is finite, and
the other does not contain it, that is infinite. There-
fore, we have to regularize the temperature indepen-
dent part, which needs some discussion. We consider
that the linear σ model is a low energy effective the-
ory, which is obtained by the bosonization of the NJL
Lagrangian using the auxiliary boson fields for quark-
antiquark states [33, 34]. The NJL model is also a low
energy effective theory, which is obtained by integrating
out the high energy mode χ of the Cho-Niemi-Fadeev
variables in the QCD Lagrangian, shown by Kondo [32].
Hence, we naturally have a physical scale on the order

of the mass of χ (1–2 GeV), and introduce here a three-
dimensional cut-off momentum Λ to represent the low
energy scale. For the temperature dependent part, we
take the integral over momentum up to infinity. Even if
we introduce Λ in the temperature dependent part, the
results are changed only slightly and the present discus-
sions are qualitatively unchanged.

4.1 Chiral limit (ε=0)

First we consider the chiral limit, ε=0. In Ref. [9] the
authors have explicitly shown that the pion decay con-
stant fπ is similar to the sigma mean field value, fπ≈v
(see their Eq. (4.15)) using the axial Ward-Takahashi
identity, even for the correlated pions. Therefore, we fix
the sigma mean field value at v=93 MeV for zero tem-
perature at the beginning.

The linear σ model Lagrangian contains three param-
eters; λ0, µ0 and Λ in the chiral limit. The constraint
that the mean field value is fixed to v = 93 MeV pro-
vides the relation among these three parameters. We
shall vary the coupling constant λ0 to present numeri-
cal results. We show first the relation between dressed
σ and π masses, Mσ and Mπ, for various cutoff Λ in a
large mass range in Fig. 5.

Fig. 5. The relation of the dressed σ mass Mσ and
the dressed π mass Mπ, fixing the sigma mean
field value at v=93 MeV. The short-dashed, solid
and long-dashed curves are for Λ=600, 800 and
1000 MeV, respectively. The calculations are done
in the chiral limit.

Generally Mσ is larger than Mπ, and the ratio be-
tween Mσ and Mπ decreases as Λ increases. In order to
understand the behaviors of these masses and their rela-
tions to the original Lagrangian, we plot µ0 as a function
of λ0 in the top panel of Fig. 6, and the dressed masses
of the σ and π mesons, Mσ and Mπ, also as functions of
λ0 in the bottom panel of Fig. 6, fixing Λ=800 MeV. Mσ

and Mπ both increase with λ0. We would like to point
out that the dressed pion mass Mπ is nonzero, when the
coupling constant λ0 is finite. This means that we need
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Fig. 6. In the top panel, we show µ0 as a function
of λ0. In the bottom panel , we show dressed σ

and π masses, Mσ and Mπ, as functions of λ0.
We fix Λ=800 MeV. The sigma and pion masses
go to zero as λ0→0. The calculations are done in
the chiral limit.

to solve Bethe-Salpeter equations in order to get the zero
physical pion mass in the chiral limit.

We then plot the physical sigma and pion masses,
mσ and mπ, as functions of the dressed pion mass Mπ

in Fig. 7 by solving the Bethe-Salpeter Eqs. (25) and
(32). The physical pion mass is zero throughout, which
means that the Nambu-Goldstone theorem is recovered
after solving the Bethe-Salpeter equations. The physi-
cal sigma mass mσ increases with Mπ. We find that the
energy gain of the physical sigma and pion masses from
their dressed masses are very large and of order Mπ.

The physical sigma mass is around 500 MeV [14] and
therefore we choose the parameters in the linear σ model
Lagrangian as:

λ0=83.6, µ0=1680 MeV, Λ=800 MeV. (40)

These values provide

v(T =0) = fπ=93.0 MeV, Mσ(T =0)=1200 MeV,

Mπ(T =0) = 580 MeV, mσ(T =0)=500 MeV, (41)

mπ(T =0) = 0.0 MeV.

We find that in order to obtain the physical sigma mass
mσ around its experimental value 500 MeV [14], we need

to take a large coupling constant λ0 = 83.6. It is inter-
esting to point out that the pion and the sigma mesons
both gain large energies of about 600–700 MeV from their
dressed masses due to the residual interaction treated by
the Bethe-Salpeter equations.

Fig. 7. Physical σ and π masses, mσ and mπ, as
functions of Mπ for Λ=800 MeV using the Bethe-
Salpeter Eqs. (25) and (32). The physical pion
mass mπ stays zero when Mπ is finite. The cal-
culations are done in the chiral limit.

We discuss here the nature of these physical σ and
π mesons. First of all the σ model Lagrangian has its
origin in quark dynamics, as the Lagrangian can be de-
rived from the NJL model by bosonization using mesons
as auxiliary fields of quark-antiquark states [33, 34]. The
GF method provides the optimum single meson (quark-
antiquark state) spectra by variation as the Hartree-
Fock method provides the optimum single particle states
of nucleons for nucleus. The BS method then pro-
vides physical meson states through interactions among
meson-meson states and with single meson states. The
threshold energy of meson-meson states with spin-parity
0+ consisting of π-π states is Mπ+Mπ=1160 MeV, which
is below the single sigma state at Mσ =1200 MeV. The
interaction among π-π states pushes down one state at
500 MeV and the lowest scalar state should be a strongly
correlated π-π state, that indicates the lowest scalar state
as a four quark state [35]. On the other hand, in the pseu-
doscalar channel the single pion state has the energy of
Mπ=580 MeV, while the σ-π configuration starts at the
energy of Mπ+Mσ =1780 MeV. The interaction among
these configurations brings down one state at zero en-
ergy and hence the physical pion should have a mixed
nature of pion and pion-sigma states. These features of
compositeness should eventually lead to the non-linear σ

model expression of chiral dynamics.
It is interesting to point out that the BS equations

do not develop imaginary terms for the σ meson, since
the physical masses are smaller than the dressed masses.
This is completely different from the mean field case,
where the BS equation for the sigma meson provides
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imaginary term, which corresponds to the decay of the
sigma meson into two pions. It is our future work to cal-
culate the transition strength of a composite sigma me-
son into two composite pions. We should further study
the properties of the physical pion in detail.

Based on these values, we shall study finite temper-
ature effects in the case of chiral limit in Section 5, and
we have indicated those observables at zero temperature
with “T = 0” in Eqs. (41), which depend on tempera-
ture. Before going to finite temperature, we discuss the
case of the explicit chiral symmetry breaking in the next
subsection.

4.2 Explicit chiral symmetry breaking case (ε 6=0)

The explicit chiral symmetry breaking is due to the
term LχSB =εσ, and we have an extra free parameter ε
in the model Lagrangian. As suggested in Ref. [9], we
use the following expression

ε=fπm2
π0 , (42)

where the parameter mπ0 is fine-tuned to be mπ0 =
142 MeV, so that the physical pion mass is calculated
to be around its physical value 138 MeV [14] by solving
the Bethe-Salpeter equation.

Fig. 8. The relation of the dressed σ mass Mσ and
the dressed π mass Mπ for the case of explicit chi-
ral symmetry breaking. The short-dashed, solid
and long-dashed curves are for Λ = 600,800 and
1000 MeV, respectively.

To do the numerical analysis, we follow the same pro-
cedures as the case of the chiral limit. Again we fix
v(≈fπ)=93 MeV. The relation of Mσ and Mπ is shown
in Fig. 8 for three cut-off momenta Λ = 600, 800 and
1000 MeV, which can be compared with the results of
Ref. [9] as well as Fig. 5.

The two cases provide essentially the same results ex-
cept for the existence of some threshold effects. We show
µ0 and the dressed masses of σ and π as functions of λ0

in Fig. 9 for Λ=800 MeV. These results are similar to
those obtained in the chiral limit, except that the dressed

pion mass has a threshold value due to the explicit chiral
symmetry breaking term.

Using the Bethe-Salpeter Eqs. (25) and (32), we can
obtain the physical pion and sigma masses, as shown in
Fig. 10 as functions of the dressed pion mass Mπ. The
physical pion mass mπ is finite and close to its physical
value 138 MeV. The physical sigma mass mσ increases
with Mπ.

Fig. 9. µ0 and the dressed σ and π masses as func-
tions of λ0 for Λ=800 MeV. The calculations are
done with an explicit chiral symmetry breaking
parameter ε 6=0.

Fig. 10. Physical π and σ masses, mσ and mπ, as
functions of Mπ obtained by solving the Bethe-
Salpeter Eqs. (25) and (32). The calculations are
done with an explicit chiral symmetry breaking
parameter ε 6=0.
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We choose the following parameters in the linear σ

model Lagrangian for the explicit chiral symmetry break-
ing case:

ε = 1422×93.0 MeV3=1.86×106 MeV3,

λ0 = 75.5, µ0=1610 MeV, Λ=800 MeV. (43)

These values provide

v(T =0) = fπ=93.0 MeV, Mσ(T =0)=1150 MeV,

Mπ(T =0) = 564 MeV, mσ(T =0)=500 MeV,

mπ(T =0) = 138 MeV. (44)

5 Finite temperature analyses

In this section we study the behavior of hadron prop-
erties at finite temperature. We shall use the parameters
fixed in the previous section, which are obtained at zero
temperature, and study both the chiral limit (ε=0) and
the explicit chiral symmetry breaking case with ε 6= 0.
By doing this we shall see how the chiral symmetry is
recovered at finite temperature.

5.1 Chiral limit (ε=0)

We discuss first the case of chiral limit (ε=0). The
sigma mean field value v is shown in Fig. 11 as a func-
tion of temperature T . It starts at v=93 MeV, and stays
around this value for a while and suddenly drops to zero
around the critical temperature TC =194 MeV. At this
temperature, the free energies at v =0 and v∼80 MeV
agree with each other and the corresponding free energy
is F∼−5×108 MeV4. There are multiple minima near the
critical temperature indicating first order phase transi-
tion. This is caused by the use of large coupling constant,
λ0 = 83.6, in order to reproduce the sigma meson mass
at zero temperature.

Fig. 11. The sigma mean field value v as a function
of the temperature T in the chiral limit. The clear
discontinuity of v around T =194 MeV indicates
a first order phase transition.

The dressed sigma and pion masses, Mσ(T ) and
Mπ(T ), are shown in Fig. 12 also as functions of T . Mσ

stays at a large value around 1200 MeV, and starts to
drop around TC, while it increases above this temper-
ature. The dressed pion mass Mπ is almost constant
around 600 MeV until TC, and also increases above this
temperature. We note that above the critical tempera-
ture TC=194 MeV the chiral symmetry is recovered, and
the dressed sigma and pion masses Mσ and Mπ coincide
in the chiral limit.

Fig. 12. The dressed sigma and pion masses, Mσ

and Mπ, as functions of the temperature T . Mσ

and Mπ coincide above the critical temperature
TC =194 MeV, where the chiral symmetry is re-
covered v = 0. The calculations are done in the
chiral limit.

We solve the Bethe-Salpeter Eqs. (25) and (32) to
calculate the physical sigma and pion masses. The re-
sulting masses are plotted in Fig. 13 as functions of T .
We see that the physical pion mass stays at zero until
TC=194 MeV, which means that the Nambu-Goldstone
theorem is recovered as long as the chiral symmetry is
spontaneously broken (v= finite). When the chiral sym-
metry is recovered above TC, the physical pion mass is
not zero any more. It coincides with the physical sigma
mass, and they both increase with the temperature T .
These physical masses correspond to the dressed masses
in the chiral symmetric phase.

In order to understand the behavior of the physical
mass, we multiply m2

π
−M 2

π
to the pole condition equation

1−Vσπ→σπ(s)Gσπ→σπ(s)=0. We then find the following
equation:

m2
π
=M 2

π
+

4λ2
0v

2Gσπ→σπ(m2
π
)

1−2λ0Gσπ→σπ(m2
π
)
. (45)

This equation indicates that in the range mπ <Mπ, mπ

goes to Mπ as v→0. This means that the BS equation
does not provide a bound state of pion-sigma compos-
ite above the critical temperature. Hence, the pion mass
becomes the thermal mass, which increases with the tem-
perature.
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Fig. 13. The physical sigma and pion masses, mσ

and mπ, as functions of the temperature T . The
pion mass mπ stays at zero mass until the crit-
ical temperature. The sigma mass mσ is finite
and drops to a small value at the critical temper-
ature. They coincide above the critical tempera-
ture TC=194 MeV, where the chiral symmetry is
recovered. The calculations are done in the chiral
limit.

We make a comment on the cut-off momentum de-
pendence of the calculated results. We have been using
the cut-off momentum of Λ=800 MeV. In order to see the
cut-off momentum dependence, we calculated the case of
Λ=1000 MeV. Definitely, all the numbers changed from
the original case. We used a constraint on the param-
eters that the sigma physical mass was mσ =500 MeV.
We found that the behavior of phase transition was al-
most identical to the original case where the sigma mass
mσ and the sigma mean field value v dropped with tem-
perature and the critical temperature was essentially un-
changed from the original case of Λ=800 MeV.

5.2 Explicit chiral symmetry breaking case (ε 6=0)

We repeat the same calculation for the case of explicit
chiral symmetry breaking. We use the mean field equa-
tion and mass-gap equations, Eqs. (17), (18) and (19) to
calculate the sigma mean field value v and the dressed
sigma and pion masses, Mσ and Mπ. The sigma mean
field value v is shown in Fig. 14 as a function of the tem-
perature T . It gradually decreases as the temperature
increases until the critical temperature TC = 198 MeV,
and suddenly drops to a small finite value. After this
critical temperature, it gradually decreases towards zero
due to explicit chiral symmetry breaking. The dressed
sigma and pion masses are shown in Fig. 15 as functions
of T . Their behaviors are similar to those in the chiral
limit. Again, these behaviors indicate a first order phase
transition even for the explicit chiral symmetry breaking
case opposing to the MF case.

We solve then the Bethe-Salpeter Eqs. (25) and (32)
to calculate the physical sigma and pion masses, mσ

and mπ. The results are shown in Fig. 16. In this
case, the pion mass stays around mπ = 138MeV below
TC = 198 MeV and then increases suddenly to a large
value. Again the physical sigma and pion masses have
almost the same values above TC, where the chiral sym-
metry is almost recovered. The reason of this behavior is
similar to the case of the chiral limit. The meson masses
above the critical temperature correspond to the thermal
masses.

Fig. 14. The sigma mean field value v as a func-
tion of the temperature T . The calculations are
done with an explicit chiral symmetry breaking
parameter ε 6=0.

Fig. 15. The dressed sigma and pion masses, Mσ

and Mπ, as functions of the temperature T . They
almost coincide above the critical temperature
TC =198 MeV, where the chiral symmetry is al-
most recovered. The calculations are done with
an explicit chiral symmetry breaking term ε 6=0.

We compare our results with those of Tsue and Mat-
suda [8]. In their calculation, they dropped the contri-
bution of σ-σ excitations for the physical σ mass in the
BS equation, by saying that the threshold energy of σ-σ
excitations is much larger than the value of the cut-off
momentum. This made the physical σ state to appear
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Fig. 16. The physical sigma and pion masses, mσ

and mπ, as functions of the temperature T . They
almost coincide above the critical temperature
TC =198 MeV, where the chiral symmetry is re-
covered. The calculations are done with an ex-
plicit chiral symmetry breaking parameter ε 6=0.

at higher energy by about 400 MeV as compared to our
case, where the σ-σ excitations were included explicitly
in the BS equation. Hence, they could take smaller cou-
pling constants with smaller cut-off momentum in order
to obtain the physical σ mass at mσ=500 MeV. This pro-
cedure made the loop contributions much smaller than
our case. In this case, they found a second order phase
transition for the explicit chiral symmetry breaking case
as the MF approximation. In our case, we prefer to in-
clude explicitly the σ-σ excitations in the BS equation.
In construction of the linear σ model, the higher energy
mode has been integrated out at the quark-gluon level in
QCD and the resulting interactions among mesons after
bosonization by integrating out quark fields and the low
energy gluon fields take care of the quark-gluon dynam-
ics [32]. This procedure naturally introduces a certain
momentum scale due to the compositeness of mesons.
Hence, we take all the excitation modes produced in the
linear σ model up to a certain momentum in terms of the
cut-off momentum Λ. In addition, the Goldstone theo-
rem to be recovered needs the excitations of σ-π states,
which have similar excitation energies as the σ-σ states.
Instead, we expect some states associated with the χ
field due to the pure gluon dynamics around 1–2 GeV
as intruder states in the meson spectrum. As for the or-
der of phase transition, even for the explicit symmetry
breaking case the contribution of the explicit symmetry
breaking term to the free energy near the critical point
is about one order smaller than other terms and it re-
mains a first order phase transition. Hence, the order of
the phase transition was not influenced by the explicitly
symmetry breaking term. If we increase the magnitude
of ε, the phase transition has a tendency to become sec-
ond order as the gap of the order parameter v at the
critical temperature becomes smaller with ε.

6 Summary and conclusion

We have studied the hadron properties using the O(4)
linear σ model, where we have used the Gaussian func-
tional (GF) method to improve the mean field approxi-
mation by including fluctuations around the mean field
values. The GF method provides a finite pion mass for
the case of spontaneous chiral symmetry breaking in the
chiral limit, and does not respect the Nambu-Goldstone
theorem at this stage. To this end, we have solved the
Bethe-Salpeter (BS) equations for the physical sigma and
pion masses. We have found that the physical pion mass
drops to zero by solving the BS equation after the GF
method, indicating that the sigma model respects the
Nambu-Goldstone theorem at this stage [9, 10].

We chose the parameters of the sigma model so as to
get mσ=500 MeV. In the case of chiral limit, the physical
pion mass is always zero due to the Nambu-Goldstone
theorem; while in the case of explicit chiral symmetry
breaking, it is not zero any more. Accordingly in the
latter case there is an extra parameter to represent ex-
plicit chiral symmetry breaking, ε 6= 0. It is fine-tuned
so that the physical pion mass becomes mπ =138 MeV.
These parameters are shown in Eqs. (40) and (43). We
found that the change from the dressed sigma and pion
masses to their physical masses is very large and of order
of 600–700 MeV. Therefore, in order to obtain a reason-
able physical sigma mass around 500 MeV, we ought to
take a large dressed sigma mass around 1200 MeV, and
consequently a large coupling constant around λ0 ≈ 80.
This large coupling of mesons causes large changes of
sigma and pion masses from their dressed values to phys-
ical values. The sigma meson is considered as a strongly
correlated meson-meson state that indicates it as a four
quark state [35]. Moreover, this coupling constant is so
large that the order of the phase transition at finite tem-
perature is of first order.

Using these parameters, i.e. Eqs. (40) and (43), which
are fixed at zero temperature, we have calculated the
sigma mean field value and the sigma and pion masses as
functions of temperature by using the GF + BS method,
for the chiral limit and explicit chiral symmetry break-
ing case. For the latter case the pion mass stays at
around mπ = 138MeV until the critical temperature
TC=198 MeV. At this temperature, the order parameter,
i.e. the sigma mean field value (condensate) v, changes
rapidly from v≈93 MeV to a small value, and then grad-
ually decreases to zero with temperature. Reflecting this
behavior, both the dressed and the physical pion masses
jump up rapidly at TC=198 MeV, to large values, corre-
sponding to the sigma masses. This behavior is caused
by the large coupling constant λ0 for the meson inter-
actions, when we consider fluctuations around the mean
field values using the GF method, and the physical pion
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and sigma mesons gain large binding energies of dressed
pion and sigma meson obtained by solving the BS equa-
tions in the case of chiral symmetry breaking below the
critical temperature. On the other hand, above the crit-
ical temperature the BS equations do not provide bound
states in both channels and the sigma and pion masses
become those of the thermal masses.

In general discussion, the linear σ model with O(4)
symmetry provided second-order phase transition at
large temperature. However, when the critical tempera-
ture is close to the hadron scale, we have to introduce a
model assumption. In the discussion by Ogure and Sato,
they made one assumption for the self energy of the
Goldstone boson to have zero mass in the spontaneously
broken phase [21]. On the other hand, probably due to

the large coupling constant we are using, the present
GF+BS formalism provided a first-order phase transi-
tion, where we have considered the linear σ model as a
low energy effective theory of QCD, and introduced the
cut-off momentum at some physical scale. Furthermore,
there is a discussion on the setting-sun diagram, which
may become important around the phase transition tem-
perature [18]. It is our future work to make clear this
point. It is also very interesting to study the properties
of mesons for the SU(3) flavor case using the GF+BS
method.
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