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FU Zi-Wen(Ff©)1)

Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education;
Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China

Abstract: Within mixed-action chiral perturbation theory (MAχPT), Sasa’s derivation of the bubble contribution

to scalar a0 meson is extended to those of scalar κ and σ mesons. We revealed that the κ bubble has two double

poles and the σ bubble contains a quadratic-in-t2 growth factor stemming from the multiplication of two double poles

for a general mass tuning of valence quarks and sea quarks. The corresponding preliminary analytical expressions

in MAχPT with 2+1 chiral valence quarks and 2+1 staggered sea quarks will be helpful for lattice studies of scalar

mesons.
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1 Introduction

Although the nature of the lowest scalar meson has
been unveiled [1], there are long-lasting debates on the
traits of the lowest scalar meson [2–7]. The tetraquark
interpretation has easily realized the experimental mass
ordering ma0(980) > mκ by lattice QCD, while q̄q states
hardly explain it [7–11]. However, the tetraquark in-
terpretation has been sharply criticized for overlooking
some unresolved physical issues, such as chiral symmetry
breaking and the non-trivial vacuum state [12], etc. This
question can be partially reconciled if the masses of q̄q
states with I = 1/2,1 and 0 are robustly calculated on
lattice. We call these states κ, a0 and σ mesons, respec-
tively.

The a0 meson was studied in staggered fermion [13,
14]. The propagators are discovered to hold states with
masses below the likely combinations of two physical
mesons [13, 14], which can be nicely interpreted by the
bubble contribution to a0 correlator (for simplicity, we
call it “a0 bubble”, likewise for “κ bubble” and “σ bub-
ble” ) derived by Sasa in mixed-action chiral perturba-
tion theory (MAχPT) [15].

With 2+1 Asqtad-improved staggered sea quarks [16],
we studied the κ meson [6], and rectified the taste-
symmetry breaking by extending the analyses of σ and
a0 mesons [15, 17–20] to κ meson in staggered chiral
perturbation theory (SχPT) [21, 22]. We realized that
the κ bubble should be involved in a fit of κ correlator

for the MILC medium coarse (a≈ 0.15 fm) and coarse
(a≈0.12 fm) lattice ensembles. Moreover, these bubble
contributions in SχPT offer a test of lattice artifacts due
to the fourth-root trick [15, 17]. Additionally, SχPT pre-
dicts that these lattice artifacts vanish in the continuum
limit, merely remaining as physical thresholds [15, 17–
22]. To check this, we specially studied scalar mesons at
a MILC fine (a≈0.09 fm) lattice ensemble [19, 22].

Lattice studies with staggered fermions are cheaper
than those of other discretizations, which allow lattice
studies with the smaller dynamical quark masses or finer
lattice spacings. However, this benefit is accompanied
by an extra theoretical complication. Each staggered
quark exists in four tastes [23], and the staggered meson
comes in sixteen tastes, and the taste symmetry breaking
at a 6=0 gives rise to discretization errors of O(a2) [24].
Since these errors are usually not negligible, these un-
physical effects predicted by SχPT should be neatly re-
moved from lattice data to extract the desired physical
quantities.

Theoretically, a lattice study with domain-wall (DW)
quarks is simpler than that with staggered quarks since
they do not come in multiple species [25, 26]. This makes
MAχPT expressions for bubble contributions to scalar
mesons simple and continuum-like [15, 27]. Moreover,
they keep proper chiral symmetry up to exponentially
small corrections at a 6= 0 [28]. We have noticed a pio-
neering study on a0 meson with DW fermions [29].

MAχPT for Ginsparg-Wilson type quarks on a stag-
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gered sea was derived [27]. Other quantities, such as the
a0 bubble, have since been added in MAχPT [15, 30–
33]. It is worth mentioning that only a few extra pa-
rameters have entered the relevant chiral formulas. One
of these parameters was determined by the MILC Col-
laboration [14]. Aubin et al. estimated another parame-
ter which is inherent in a mixed-action case [29]. These
parameters can be used to study other quantities: for
example, bubble contributions to scalar mesons.

In this work we extend Sasa’s derivation of a0 bub-
ble [15] to those of κ and σ correlators in MAχPT with
2+1 chiral valence quarks and 2+1 staggered sea quarks,
and use the two above-mentioned published parame-
ters [14, 29] to elucidate our analytical expressions. We
have found that κ and σ bubbles have particular features.

2 MAχPT

At leading-order quark mass expansion, the mixed
action chiral Lagrangian is described by NV Ginsparg-
Wilson valence quarks and NS staggered sea quarks [27].
Each staggered sea quark comes in four tastes, and each
Ginsparg-Wilson valence quark owns a bosonic ghost
partner, and these bosons are expressed by the field

Σ=exp(2iΦ/f),

which is an element of U(4NS+NV|NV), and Φ is a matrix
gathering pseudoscalar fields. For instance, in the case
NV=3, NS=3, Φ is arranged by [27, 30]
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where we label the sea quarks by u, d, and s and the
corresponding valence quarks and valence ghosts by x, y,
z and x̃, ỹ, z̃, respectively. The sea-quark bound state
fields are U , π

+, K+, etc., P +, T+, T 0, X , Y and Z are
the xȳ, xz̄, yz̄, xx̄, yȳ and zz̄ valence bound states, re-
spectively; and, P̃+, T̃+, T̃ 0, X̃, Ỹ and Z̃ are the relevant
combinations of valence ghost quarks. Those labeled by
R’s are the (fermionic) bound state composed of one va-
lence and one ghost quark. Similarly, QFv stands for
the bosonic mixed bound state Fv̄, where F ∈ {u,d,s},
and v∈{x,y,z}. The mixed ghost-sea pseudo-Goldstone
bosons indicated by ellipses are not used in this work.

The valence-valence mesons obey mass relations [27]:

M 2
vv′ =µ(mv+mv′), (1)

where three valence quarks have mx, my and mz (which
is the same for the corresponding valence ghost flavors),
respectively. We are only interested in the degenerate up
and down valence quarks masses; that is, mx =my 6=mz

(2+1) case.
For a meson of taste b made up of sea quarks F and

F′ (F 6=F′), the tree-level results give [24]

M 2
FF′,b=µ(mF+mF′)+a2∆(ξb), (2)

where the staggered sea quarks u, d, s own masses mu,
md and ms, respectively, and ∆(ξb) is different for each
of SO(4)-taste irreps: P, V, A, T, I [24]. A new operator
relating the valence and sea sectors yields a taste break-
ing parameter a2∆Mix of the valence-sea pion mass, for
a Fv̄ meson with field QFv, whose mass is given by [27]

M 2
Fv=µ(mF+mv)+a2∆Mix, (3)

where parameter ∆Mix can be measured via lattice QCD.
The connected propagators for valence-valence

mesons with v, v′=x, y, z, x̃, ỹ, z̃ are given [27]

〈Φvv′ |Φv′v〉=
εv

k2+M 2
v,v′

, εx,y,z=1,εx̃,ỹ,z̃=−1. (4)

The flavor-neutral propagators appearing in the ex-
pression for the bubble contributions to scalar mesons
are only those with two valence quarks [27],

〈Φvv|Φv′v′〉disc

= −
1

3

(k2+M 2
UI

)(k2+M 2
SI

)

(k2+M 2
v,v)(k

2+M 2
v′,v′)(k2+M 2

ηI
)
, (5)

where it is convenient to use m2
0→∞ to decouple the η

′
I,

and we are only interested in 2+1 case [14],

m2
π0

I

=m2
UI

=m2
DI

, m2
ηI

=
1

3
m2

UI
+

2

3
m2

SI
,

here M 2
UI

=M 2
U5

+a2∆I, M 2
SI

=M 2
S5

+a2∆I. It is interesting
to note that the sea-sea pseudo-Goldstone bosons in the
above expressions are taste singlets.

The propagators for valence-sea mesons with F=u, d,
s and v=x, y, z are given by

〈ΦvF|ΦFv〉=
1

k2+M 2
v,F

. (6)

It is important to note that propagators (4), (5) and (6)
rest only on taste breaking parameters a2∆I and a2∆Mix.

3 Scalar bubble term in MAχPT

The simulations with chiral valence quarks on top of
MILC staggered sea quarks is feasible and charming. The
relevant effective theory has been developed [27]. Follow-
ing the original derivations and notations [15, 27, 29, 30],
we here deduce κ bubble and σ bubble in MχPT with
2+1 chiral valence quarks and 2+1 MILC staggered sea
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quarks (mu=md 6=ms). Since the a0 bubble is derived in
Ref. [15], and its time Fourier transform is provided in
Eq. (11) of Ref. [29], we will directly quote these results.

3.1 κ bubble

The bubble contribution to κ correlator is denoted in
Ref. [21]. Applying the Wick contractions, we have

BMχPT
2+1,κ = µ2

[

2〈Φxx|Φzz〉〈Φxz|Φzx〉

+
∑

v=x,y,z,x̃,ỹ,z̃

〈Φxv|Φvx〉〈Φvz|Φzv〉

+
∑

F=u,d,s

〈ΦxF|ΦFx〉〈ΦFz|ΦzF〉

]

, (7)

where the third term is already considered to reduce four
tastes per sea quark to one [15]1). The bubble contribu-
tion is secured by inserting relevant propagators into (7)

BMχPT
2+1,κ (p) = µ2

∑

k

{

−
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+
1
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x,s

1

k2+M 2
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}

. (8)

It is helpful to perform a partial fraction decomposition,
Eq. (8) can then be simplified to a form

BMχPT
2+1,κ (p) = µ2

∑

k

{

−
1

(k+p)2+M 2
x,z

×

[

g1

k2+M 2
ηI

+
g2

k2+M 2
x,x

+
g3
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g4
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x,x)

2
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(k2+M 2
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2

]

+
2

(k+p)2+M 2
x,u

1

k2+M 2
z,u

+
1

(k+p)2+M 2
x,s

1

k2+M 2
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}

, (9)

where
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1

3
×

(M 2
UI
−M 2

ηI
)(M 2

SI
−M 2

ηI
)

(M 2
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The time Fourier transform of κ bubble (namely,
BMχPT

2+1,κ (t)=F.T.[BMχPT
2+1,κ (p)]p=0) is then provided by

BMχPT
2+1,κ (t) =

µ2

4L3

∑

k

[

−g1

e−(ωxz+ωηI
)t

ωxzωηI

−g2

e−(ωxz+ωxx)t

ωxxωxz

−g3

e−(ωxz+ωzz)t

ωxzωzz

−g4

e−(ωxz+ωxx)t

2ωxzω3
xx

(ωxxt+1)

−g5

e−(ωxz+ωzz)t

2ωxzω3
zz

(ωzzt+1)

+
e−(ωxs+ωzs)t

ωxsωzs

+2
e−(ωxu+ωzu)t

ωxuωzu

]

, (11)

where, for brevity, in this work we use the notation
ωi≡

√

k2+m2
i from Ref. [29].

1) It is interesting and important to note that the corresponding bubble contribution to a0 correlator is

B
MχPT
2+1,a0

= µ2





∑

F=u,d,s

〈ΦxF|ΦFx〉〈ΦFy |ΦyF〉+2〈Φxx|Φyy〉〈Φxy |Φyx〉+
∑

v=x,y,z,x̃,ỹ,z̃

〈Φxv|Φvx〉〈Φvy |Φyv〉



,

which results in two extra terms to original Eq. (13) in Ref. [15], which are neatly canceled each other out in the final a0 bubble.
Consequently, it is nicely consistent with Sasa’s result derived with 2 chiral valence quarks and 2+1 staggered sea quarks [15].
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It is worth mentioning that no free parameters are
presented in (11), which is solely predicted by MAχPT.
The meson masses, coupling constant µ, mixed-meson
splittings a2∆mix and taste-singlet breaking a2∆I are
evaluated from lattice studies [14, 29]. Additionally, we
notice that Eq. (11) gets unphysical contributions from
KS intermediate states. Luckily, it never dominates the κ

bubble at large t. Moreover, there are two double poles
in its momentum-space propagator, which lead to the
infrared-sensitive linear-in-t growth factors in the fourth
and fifth terms of Eq. (11). We will observe that there
is a desirable cancellation between two double poles.

Since full QCD is restored in MAχPT only at a=0,
the KS contributions cannot be entirely removed for any
selection of realistic simulation parameters. In the con-
tinuum limit (a2∆I → 0, a2∆Mix → 0), the κ bubble re-
duces to a simple form

Ba=0
κ

(t) =
µ2

4L3

∑

k

[

3

2

e−(ωU5
+ωK5

)t

ωU5
ωK5

+
1

6

e−(ωK5
+ωη5

)t

ωK5
ωη5

]

, (12)

which is well consistent with that of SχPT [21, 22].

3.2 σ bubble

The bubble contribution to σ correlator is denoted in
Ref. [17]. Applying the Wick contractions, we get [15]

BMχPT
2+1,σ = µ2

[

2〈Φxx|Φxx〉〈Φxx|Φxx〉

+2〈Φxx|Φyy〉〈Φxx|Φyy〉

+
∑

v=x,y,z,x̃,ỹ,z̃

〈Φxv |Φvx〉〈Φvx|Φxv〉

+
∑

F=u,d,s

〈ΦxF|ΦFx〉〈ΦFy|ΦyF〉

]

. (13)

The bubble contribution is secured by plugging the rele-
vant propagators into (13)

BMχPT
2+1,σ (p) = µ2

∑

k

{

−
4

3

1

(k+p)2+M 2
x,x

×
1

(k2+M 2
x,x)

2

(k2+M 2
UI

)(k2+M 2
SI

)

k2+M 2
ηI

+
4

9

1

((k+p)2+M 2
x,x)

2

×
((k+p)2+M 2

UI
)((k+p)2+M 2

SI
)

(k+p)2+M 2
ηI

×
1

(k2+M 2
x,x)

2

(k2+M 2
UI

)(k2+M 2
SI

)

k2+M 2
ηI

+2
1

(k+p)2+M 2
x,x

1

(k2+M 2
x,x)

2

+2
1

(k+p)2+M 2
x,u

1

k2+M 2
x,u

+
1

(k+p)2+M 2
x,s

1

k2+M 2
x,s

}

. (14)

It is convenient to use the partial fraction decomposition,
expression (14) can then be simplified to a compact form

BMχPT
2+1,σ (p) = B2

∑

k

{

h1

(k+p)2+M 2
x,x

1

k2+M 2
x,x

+
h2

(k+p)2+M 2
x,x

1

(k2+M 2
x,x)

2

+
h3

(k+p)2+M 2
x,x

1

k2+M 2
ηI

+
h4

((k+p)2+M 2
x,x)

2

1

(k2+M 2
x,x)

2

+
h5

(k+p)2+M 2
ηI

1

k2+M 2
ηI

+
h6

((k+p)2+M 2
x,x)

2

1

k2+M 2
ηI

+2
1

(k+p)2+M 2
x,u

1

k2+M 2
x,u

+
1

(k+p)2+M 2
x,s

1

k2+M 2
x,s

}

, (15)

where

h1 = 2−
4

3

3M 2
x,x(M

2
x,x−2M 2

ηI
)+2M 4

SI
+M 4

UI

3(M 2
ηI
−M 2

x,x)
2

+
4

9

(

3M 2
x,x(M

2
x,x−2M 2

ηI
)+2M 4

SI
+M 4

UI

3(M 2
ηI
−M 2

x,x)
2

)2

,

h2 =
(M 2

UI
−M 2

x,x)(M
2
SI
−M 2

x,x)

M 2
ηI
−M 2

x,x
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×

(

8

9

3M 2
x,x(M

2
x,x−2M 2

ηI
)+2M 4

SI
+M 4

UI

3(M 2
ηI
−M 2

x,x)
2

−
4

3

)

,

h3 =
(M 2

UI
−M 2

ηI
)(M 2

SI
−M 2

ηI
)

(M 2
x,x−M 2

ηI
)2

×

(

8

9

3M 2
x,x(M

2
x,x−2M 2

ηI
)+2M 4

SI
+M 4

UI

3(M 2
ηI
−M 2

x,x)
2

−
4

3

)

,

h4 =
4

9

(

(M 2
UI
−M 2

x,x)(M
2
SI
−M 2

x,x)

M 2
ηI
−M 2

x,x

)2

,

h5 =
4

9

(

(M 2
UI
−M 2

ηI
)(M 2

SI
−M 2

ηI
)

(M 2
x,x−M 2

ηI
)2

)2

,

h6 =
8

9

(M 2
UI
−M 2

x,x)(M
2
SI
−M 2

x,x)

M 2
ηI
−M 2

x,x

×
(M 2

UI
−M 2

ηI
)(M 2

SI
−M 2

ηI
)

(M 2
x,x−M 2

ηI
)2

. (16)

The time Fourier transform of σ bubble is

BMχPT
2+1,σ (t) =

µ2

4L3

∑

k

[

h1

e−2ωxxt

ω2
xx

+h2

e−2ωxxt

2ω4
xx

(ωxxt+1)

+h3

e−(ωxx+ωηI
)t

ωxxωηI

+h4

e−2ωxxt

4ω6
xx

(ωxxt+1)
2

+h5

e−2ωηI
t

ω2
ηI

+h6

e−(ωxx+ωηI
)t

2ω3
xxωηI

(ωxxt+1)

+2
e−2ωxut

ω2
xu

+
e−2ωxst

ω2
xs

]

. (17)

Once again, we note that expression (17) is solely
predicted by MAχPT, and it also gets unphysical contri-
butions from πη intermediate states, which luckily never
dominate the σ correlator at large t. Moreover, there are
two kind of double poles in its momentum-space propa-
gator: the infrared-sensitive linear-in-t growth factors in
the second and sixth terms of Eq. (17) arising from the
double poles, and the strong infrared-sensitive quadratic-
in-t2 growth factor in the fourth term of Eq. (17), which
stems from the multiplication of two double poles.

The unphysical πη intermediate states contribute to
σ bubble since MAχPT is not unitary at a 6=0. In the
continuum limit (a2∆I →0, a2∆Mix→0), the expression

(17) reduces to a pretty simple form

Ba=0
σ

(t) =
µ2

4L3

∑

k

[

3
e−2ωU5

t

ω2
U5

+
e−2ωK5

t

ω2
K5

+
1

9

e−2ωeta5
t

ω2
η5

]

,

(18)

which is nicely consistent with that of SχPT [17, 19, 20].

4 Numerical illustration of bubbles

We plan on launching a series of lattice investigations
of scalar mesons using DW fermions and the MILC 2+1
asqtad-improved staggered sea quarks. So far, the MILC
lattice ensembles with two lattice spacings (the coarse
and fine lattices), which are extensively studied. So, it is
useful to exploit the MILC determined parameters [14]
to acquire the preliminary numerical predictions for the
bubble contributions to scalar mesons in MAχPT, which
will then guide us in the ongoing lattice studies.

We illustrate these predictions only on two MILC lat-
tice ensembles: one is a coarse ensemble (a ≈ 0.12 fm,
amu/ams = 0.005/0.05), another one is a fine ensemble
(a≈0.09 fm, amu/ams=0.0062/0.031), which are labeled
“coarse” and “fine” lattice ensemble, respectively. We
here just exhibit two of the most popular mass match-
ings of chiral valence quarks and staggered sea quarks.
To help one quantitatively comprehend each term in the
bubble contributions to scalar mesons, each is displayed
in the corresponding figures, which indicate the whole
bubble contribution with a black solid line.

4.1 Matching 1

The first selection is to fix the valence pion mass and
kaon mass to be equal to the taste-pseudoscalar sea pion
mass and kaon mass; to be specific, Mx,x =MU5

, which
is practiced in Ref. [34], and Mx,z=MK5

. This tuning is
attractive since the taste-pseudoscalar pion mass disap-
pears in the chiral limit, even at a 6=0.

Figure 1 shows κ bubble on the MILC coarse and fine
ensembles (the top panel shows the result for coarse lat-
tice, while bottom panel is that of fine lattice). In these
figures, “πK” indicates the intermediate states with the
valence pion and kaon, and likewise for “Kη” and “KS”,
while “πK Mixed” represents the intermediate states
with mixed valence-sea pion and kaon, and likewise for
“KS Mixed”. “πK double pole” and “KS double pole”
are the fourth and fifth terms in (11). The analogous
notations are used to σ and a0 bubbles.

From Fig. 1, we note that physical ηK states domi-
nate the κ bubble until t≈11 for coarse lattice and t≈27
for fine lattice, and it quickly decreases afterwards. On
the other hand, the “πK double pole” is pretty small at
small t, but for enough large t it gradually dominates the
κ bubble, whereas the “KS double pole” is negligible. It
is important to note that there is a cancellation between
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the two double pole terms, which is a special feature of
the κ bubble. This cancellation is good news for study-
ing the κ meson since it decreases the unitarity-violation
of κ bubble. Moreover, the πK state plays an important
part in the κ bubble. It is important to note that the
unphysical KS state never dominates the κ bubble.

Fig. 1. κ bubble for a simulation with chiral
fermions on a MILC coarse staggered configu-
ration. The valence and sea quark masses are
tuned by matching Mx,x =MU5

and Mx,z =MK5
.

The parameters a2∆I and a2∆Mix are taken from
Refs. [14], [29], respectively.

Figure 2 shows a0 bubble on the MILC coarse and fine
ensembles (top panel for coarse lattice, bottom panel for
fine lattice). We note that physical πη states dominate
the a0 bubble until t ≈ 4 for coarse lattice and t ≈ 12
for fine lattice, and it quickly decreases afterwards. On
the other hand, the third term in Eq. (11) of Ref. [29]
(“ππ double pole”) is pretty small at small t, but for
a large enough t it eventually dominates the a0 bubble.
We note that the physical KK state never dominates the
a0 bubble, while the unphysical ππ state plays a very
important role in the a0 bubble. This indicates that the
reliable determination of a0 meson mass is feasible only
for appropriate quark masses and times [15].

Figure 3 shows the σ bubble on the MILC coarse and
fine ensembles (the top panel for coarse lattice, and bot-
tom panel for fine lattice). We note that physical ππ

states (the second term in (17)) dominate the σ bubble
until t≈3 for coarse lattice and t≈8 for fine lattice. On

Fig. 2. a0 bubble for a simulation with chiral
fermions on a MILC coarse lattice. The valence
and sea quark masses are tuned as Mx,x=MU5

.

Fig. 3. σ bubble for a simulation with chiral
fermions on a MILC coarse lattice. The valence
and sea quark masses are tuned as Mx,x=MU5

.
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the other hand, the fourth term in (17) (“ππ two double
pole”) is pretty small at small t, but for a large enough t
it eventually dominates the σ bubble1). While the sixth
term in (17) (“πη double pole”) is negligible, it is obvi-
ous to note that there exists a cancellation among three
term with double poles. Moreover, it is important to
note that the unphysical πη state never dominates the σ

bubble, and the σ bubble is positive for all of the times.
It is worth mentioning that all of the bubble contribu-

tions to scalar correlators are dominated by the double
poles at large t for this tuning. Actually, the double
pole is an unphysical effect that stems from selecting
the valence-quark action, which is different from the sea-
quark action [35]. We found that these unitarity viola-
tions are not likely to be fairly small for this tuning on
MILC coarse lattice, while the degree of unitarity viola-
tion decreases with the finer lattice spacing, as expected.

4.2 Matching 2

The second choice is to fix the valence pion mass and
valence kaon mass to be equal to the taste-singlet sea
pion mass UI and taste-singlet sea kaon mass, respec-
tively; that is, Mx,x=MUI

and Mx,z=MKI
. This tuning

completely removes the double pole terms in both κ bub-
ble, σ bubble, and a0 bubble. Moreover, these bubble

Fig. 4. κ bubble for a simulation with chiral
fermions on MILC coarse lattice. The mass tun-
ings are Mx,x=MUI

and Mx,z=MKI
.

contributions have turned out to be relatively small and
usually positive. Nonetheless, it still does not entirely
remove unphysical states. Additionally, in practice this
tuning may not be recommendable since it would lead to
a fairly heavy valence pion and kaon on the MILC coarse
lattices.

Figure 4 shows the κ bubble on a MILC coarse and
fine ensemble. We note that physical πK states dominate
the κ bubble at all of the times. Moreover, the unphysi-
cal KS state is small, while the physical Kη state makes
a small contribution.

Figure 5 displays the σ bubble on a MILC coarse en-
semble. We note that physical ππ states (the first term
in (17)) dominate the σ bubble at all of the times. More-
over, physical ηη and KK states play a small role in the
σ bubble.

Fig. 5. σ bubble for the simulation with chiral
fermions on 2+1 MILC fine lattice. The valence
and sea quark masses are tuned as Mx,x=MUI

.

5 Summary

In this work we extended Sasa’s derivation on bubble
contribution to a0 correlator in MAχPT [15] to those of
κ and σ correlators. We found that these extensions are
useful since κ and σ bubbles demonstrate many new fea-
tures as compared with a0 bubble. For example, the κ

and σ bubbles are dominated by the physical two-particle
states at a large enough t, while the a0 bubble is dom-
inated by unphysical two pions states. Moreover, we
notice a strong infrared-sensitive quadratic-in-t2 growth
factor in the σ bubble due to the multiplication of the
two double poles. In practice, special attention should
be paid to monitor the size of this unitarity violation,
otherwise it will lead to an “infrared-disaster” for the σ

bubble for a given tuning.
MAχPT predicts the observed unitarity-violations

pretty well. This is good news for one who employs the
mixed actions to study scalar meson. Moreover, different

1) It overwhelmingly dominates the σ bubble as early as t≈6 for coarse lattice, and dominates the σ bubble about t≈16 for fine lattice.
This means that if we do not choose the suitable simulation parameters, this term will be an “infrared-disaster” to the σ bubble.
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mass tunings have remarkable effects on scalar correla-
tors, our extended analytical expressions are helpful to
aid researchers in selecting the appropriate simulation
parameters for determining scalar meson masses.

Lattice studies of scalar mesons using DW valence
quarks and staggered sea quarks contain the excellent
traits of both fermion discretizations. The corresponding
numerical results will be used as a cross-check with our
lattice studies on scalar mesons with other methods [36].
Therefore, it will be interesting to measure the relevant

lattice data to verify the MAχPT formulae for κ and σ

bubbles. We will appeal for computational resources to
pursue this challenging enterprise.

We appreciate K. F. Liu for helping us with some
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the happy day spent studying scalar mesons with Car-
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my Ph.D.
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