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Abstract: The new beam position monitor (BPM) system of the injector at the upgrade project of the Hefei Light

Source (HLS /) has 19 stripline beam position monitors. Most consist of four orthogonally symmetric stripline

electrodes. Differences in electronic gain and mismachining tolerance can cause changes in the beam response of the

BPM electrodes. This variation will couple the two measured horizontal positions, resulting in measuring error. To

alleviate this effect, a new technique to measure the relative response of the four electrodes has been developed. It

is independent of the beam charge, and the related coefficient can be calculated theoretically. The effect of electrode

coupling on this technique is analyzed. The calibration data is used to fit the gain for all 19 injector beam position

monitors. The results show the standard deviation of the distribution of measured gains is about 5%.
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1 Introduction

The Hefei Light Source (HLS) is currently being up-
graded to HLS /. The injector beam position moni-
toring (BPM) system is composed of 19 beam position
monitors, most of which are regular stripline type BPMs.
They are precisely calibrated and carefully installed in
place [1]. We have developed a new technique that pro-
vides a measure of the relative gain of the four stripline
electrodes.

The method we developed is similar to the technique
of D. L. Rubin [2] et al. It also based on the fact that,
in a four electrodes beam position monitor, the position
of the beam is overdetermined. The relative gains of
the electrodes can be calculated by measuring the elec-
trode signal at many different beam positions. Rubin’s
method is based on image theory, which requires the
geometry of the four BPM electrodes to be diagonally
symmetric. The geometry of a typical HLS / beam po-
sition monitor is as shown in Fig. 1. The four electrodes
are orthogonally symmetric, for which Rubin’s method
does not apply, so we have developed a new technique to
measure the relative gains for this type of four-electrode
beam position monitor. Through the analysis of the the-

oretical electrode signal induced by the beam, we find a
new expression related only to the electrode signal. This
expression can be used to fit the electrode gain errors.
For each fitting procedure, four unknown parameters are
fitted: three button gains and a geometry scaling factor.

Fig. 1. HLS II injector beam position monitor.
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2 Derivation of new expression

As Fig. 1 shows, the four electrodes of a HLS / typ-
ical BPM are 90 degrees away from each other. By ig-
noring the influence of bunch size, the electrode signal of
this type of BPM can be represented by [3]
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where Ibeam is the beam charge, φ is the opening angle
of the electrodes, and b is the distance from the center of
the beam position monitor to the electrodes. Z1x, Z1y,
Z2, Z3x, Z3y and Z4 are introduced in order to simplify
the expressions to























































































Z1x=2
sin(φ/2)

φ/2

x0

b
, Z1y=2

sin(φ/2)

φ/2

y0

b
,

Z2=2
sinφ

φ

x2
0−y2

0

b2
,

Z3x=2
sin(3φ/2)

3φ/2

x2
0−3y2

0

b2

x0

b
,

Z3y=2
sin(3φ/2)

3φ/2

3x2
0−y2

0

b2

y0

b
,

Z4=
sin(2φ)

φ

3(x2
0−y2

0)
2
−2(x4

0+y4
0)

b4
.

(2)

where x0 and y0 are the positions of the beam. When
the beam is near the center of the beam pipe, x0 and y0

are small compared to b. In this case, the third order
and up can be ignored, so the electrode signals can be
approximated as a quadratic polynomial expansion
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Taking the sums and differences of Eq. (3) gives
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where EQ is the electrical quadrupole component signal,
Ex−y is the electrical position signal of x minus y, Ex+y

is the electrical position signal of x plus y. Also, ignoring
the third order and up we can simply get
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Combining Eq. (2) and Eq. (5) to eliminate x0 and
y0 gives an expression that simply relates the electrode
signals:
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In this case, k is a constant determined only by the
electrode opening angle of the BPM. For a regular injec-
tor stripline BPM in HLS /, φ is 45◦ and b=13.1 mm, so
we can simply calculate that k is 0.474. Eq. (6) not only
shows that EQ is proportional to the product Ex−yEx+y,
but more importantly, that the equation is irrelevant to
the beam charge, which is useful when fitting the gain
errors using real beam.

3 Simulation

To simulate the connection between EQ and Ex−y

Ex+y, we used a finite element code to create a map
of each electrode response as a function of beam posi-
tion [4].

The simulated beam was moved in a 10 mm×10 mm
square area with a step of 0.5 mm. EQ and Ex−yEx+y

were calculated with the exact response of electrodes at
every beam position. The product Ex−yEx+y is plotted
versus EQ in Fig. 2. In Fig. 2, only slight deviations from
the straight line appear at large amplitudes, showing the
extent to which the higher than second order terms can
be ignored.

We see that our quadratic term approximation works
well, with the product Ex−yEx+y approximated to EQ,
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fitting the form of Eq. (6) with only slight deviations at
large amplitudes.

In practice, the four electrodes do not have the same
gain, so the connection between electrodes defined by
Eq. (6) will fail. We simulate the effect of gain errors
by reducing the signal on electrode B by 10%. Fig. 3
shows Ex−yEx+y vs EQ with the data under this condi-
tion, with + indicating the coordinate origin (0,0). The
data is no longer linear and it is offset from zero.

Fig. 2. Ex−y Ex+y vs EQ for points on a
10 mm×10 mm grid with simulated electrodes sig-
nal vs beam position.

Fig. 3. Ex−y Ex+y vs EQ for points on a 10 mm×
10 mm grid, with electrode intensity computed
with the nonlinear map.

4 Electrode coupling effect

Equation (6) is based on the assumption that the four
electrodes are independent of each other. In fact, there is
a coupling effect between the electrodes. Each electrode
can be induced by signals from other electrodes. We set
K1 as the coupling coefficient of the opposite electrode,

and K2 as the coupling coefficient of an adjacent elec-
trode. So the four electrode signals are given by
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In this case, we calculate Eq. (4) by ignoring the third
order and up
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ṼR+Ṽ −

L

(
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So Eq. (6) can be modified to
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k̃≈
(1+K1)

2
−4K2

2

(1−K1)
2

φ

4tan(φ/2)
,

(9)

where k̃ is a coefficient determined by the electrode cou-
pling effect and the electrode opening angle. We calcu-
late the coupling coefficients through analysis of the sim-
ulation BPM model using CST-Microwave Studio soft-
ware. A simulated Gaussian signal is generated at one
electrode. By integrating the original signal and the in-
duced signal at other electrodes, we obtain K1=1.82%
and K2=5.52%. Finally, we obtain k̃ to be about 0.504.

5 Electrode gain fit with new expression

We assume the deviations from Eq. (9) are deter-
mined by the gain variations between different elec-
trodes. We use a nonlinear least squares fit to get the
electrode gains (gR, gL, gT and gB). The merit function
to be minimized is
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gTṼT+gBṼB

)
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χ2 has a minimum for the best fit gains (gR, gL, gT

and gB) and k̃. To make sure the value of the denomina-
tor is not zero, we fit the same data four times, each time
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setting one of the electrode gains to 1, and then average
the results.

6 Fitting the calibration data

All the 19 HLS / injector stripline BPMs are cal-
ibrated at a test bench, using a tungsten filament to
simulate the beam [1]. The filament was moved in a
10 mm×10 mm square area with a step of 0.5 mm. We
collected the electrodes signal data on each simulated
beam position using Libera Brilliance Single Pass [5].
An example of fitted data based on Eq. (10) at one
BPM (LA-BD-BPM03) is shown in Fig. 4. In Fig. 4, the
open circles are the raw electrode data, the crosses are
the electrode data corrected with the fitted gains, the
+ indicates the coordinate origin (0,0). The fitted gains
(gR, gL, gT and gB) are 0.882, 1.122, 0.923 and 1.122
respectively. The results show that the data has better
linearity and passes through zero after gain fitting. The
fitted gains have large differences, because we included
the worst BPM, in which the mechanical processing qual-
ity is low (machining errors are visible even by the naked
eye). This indicates that the gain fit is quite necessary.

Fig. 4. Ex−y Ex+y vs EQ for a calibration data at
LA-BD-BPM03.

To verify the effectiveness of the above method, Ta-
ble 1 shows the main changes in the geometric calibration
parameters of LA-BD-BPM03 before and after gain fit-
ting. Compared to the geometric coefficient before gain
fitting, the geometric coefficient is closer to the theoret-
ical value of 7.55 mm after gain fitting. Thus, the above
method is effective.

The gains for all 19 BPMs are shown in Fig. 5. The
distribution of fitted gains is shown in Fig. 6. The stan-
dard deviation of the distribution of measured gains is
about 5%. Most electrodes gain errors are between 0.9
and 1.1. Note that the average value of parameter k̃
is 0.530, which is a little bit larger than the theoreti-
cal value 0.504. The reason could be an increase in the

coupling effect caused by mechanical processing, and the
calibration method.

Table 1. The change of calibration parameters be-
fore and after gain fitting.

before gain fitting after gain fitting

position x y x y

offset/mm −0.19 −0.15 −0.13 −0.01

geometric coefficient/mm 7.60 7.41 7.60 7.45

Fig. 5. Fitted gains and parameter k̃ from calibra-
tion data for all 19 injector beam position moni-
tors.

Fig. 6. Distribution of fitted gains for the data
plotted in Fig. 5.

7 Simulation of real beam gain fit

The calibration beam is equally distributed in a
10 mm×10 mm square area, but the distribution of the
real beam is not so equal. To see if the gain fit method is
still effective, we perform a simulation of this situation.
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Considering that the fit will be better when the beam
is in a smaller range near the center, and the beam can be
precisely controlled using corrector magnets, we simulate
50 random beam points in a 4 mm×4 mm square area.
Also, because most electrodes gain errors are between 0.9
and 1.1, we reduce the signal of the electrode B by 10%,
that is, the theoretical fitted gains (1:4)=0.9750, 0.9750,
0.9750, 1.0833. We fit the gains following the above pro-
cedure, giving fitted gains (1:4)=0.9749, 0.9745, 0.9752,
1.0839. The difference from the theoretical value is less
than 0.1%. The Ex−y Ex+y vs EQ before and after gain
fit is shown in Fig. 7.

Fig. 7. Ex−y Ex+y vs EQ for 50 simulated beams
in a 4 mm×4 mm square area.

In real beam gain fitting, we will try to control
the beam as precisely as possible, making it move in
a 4 mm×4 mm square area with a step of 0.5 mm. A
total of 81 beam points are collected. The fitted results
should be better than the previous simulation due to
larger sampling number and more equal distribution of
the beam.

8 Conclusion

We have derived a relationship between the intensi-
ties of the four electrodes of an orthogonal symmetrical
type beam position monitor. This relationship is better
than those derived in previous studies because it is inde-
pendent of the beam charge and the related coefficient
can be theoretically calculated. We analyze the effect
of electrode coupling on the relationship. We also show
how the relationship can be used to make a beam-based
measurement of the relative gains of the four electrodes.
We have used the calibration data to fit the gain for all
19 injector beam position monitors. The standard devi-
ation of the distribution of measured gains is about 5%,
consistent with the specifications of the system electron-
ics. A simulation of real beam gain fit with this method
is done, showing the difference from the theoretical value
to be less than 0.1%. In future, will use real beam data
from the HLS / injector to fit the electrode gain; this
can be implemented as a part of the standard measure-
ment suite of the HLS / injector BPM system.
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