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Abstract: The high radiation dose in computed tomography (CT) scans increases the lifetime risk of cancer, which

becomes a major clinical concern. The backprojection-filtration (BPF) algorithm could reduce the radiation dose

by reconstructing the images from truncated data in a short scan. In a dental CT, it could reduce the radiation

dose for the teeth by using the projection acquired in a short scan, and could avoid irradiation to the other part

by using truncated projection. However, the limit of integration for backprojection varies per PI-line, resulting

in low calculation efficiency and poor parallel performance. Recently, a tent BPF has been proposed to improve

the calculation efficiency by rearranging the projection. However, the memory-consuming data rebinning process

is included. Accordingly, the selective BPF (S-BPF) algorithm is proposed in this paper. In this algorithm, the

derivative of the projection is backprojected to the points whose x coordinate is less than that of the source focal

spot to obtain the differentiated backprojection. The finite Hilbert inverse is then applied to each PI-line segment.

S-BPF avoids the influence of the variable limit of integration by selective backprojection without additional time

cost or memory cost. The simulation experiment and the real experiment demonstrated the higher reconstruction

efficiency of S-BPF.
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1 Introduction

X-ray computed tomography (CT) has been widely
used in dental CT for diagnosis. One of the objectives
of modern CT is to reduce the radiation dose because of
the health risks caused by X-rays. In dental CT, pro-
jection data are collected by irradiating the brain. The
global reconstruction algorithm requires projection with-
out truncated data to obtain the image of dens, which
means the brain must be irradiated by a higher radia-
tion dose. However, the local reconstruction algorithm
can deal with truncated projection data [1].

Recently inspired by the ATRACT algorithm [2]
which can restrain the truncation artifacts to some ex-
tent by using local filter and global filter, Wang [3]
proposed an filtration-backprojection (FBP) algorithm
based on the Radon inversion transform (RIT) and
achieved fast reconstructing without reducing the qual-
ity of the reconstruction. But the ability to restrain the

truncation artifacts is limited.
The backprojection-filtration (BPF) algorithm can

be used for local reconstruction. This algorithm was de-
veloped for image reconstruction on PI-line segments [4]
in a helical cone-beam scan, and it provided a strategy
for reconstructing the exact region of interest (ROI) us-
ing truncated data [5–11]. Because the circular scanning
trajectory is easy to implement and control in practice,
it is widely used in CT [12]. Based on the concept of vir-
tual PI-line and virtual circular orbit, Yu et al. modified
the BPF algorithm to reconstruct images in a circular
cone-beam scan [13]. The modified algorithm is an ex-
cellent work for low-dose dental CT because it can deal
with the local reconstruction in the short scan. However,
the modified algorithm is not a good choice for practical
dental CT because of its low reconstruction efficiency and
poor parallel performance [14]. The tent backprojection-
filtration (T-BPF) algorithm [14] has been recently de-
veloped to obtain a fast reconstruction from truncated
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data in circular cone-beam CT. This algorithm improves
the reconstruction efficiency and parallel performance by
making projection data rebinned into a tent-like parallel-
beam format from the cone-beam format. And it has
the same parallel performance as the FDK (Feldkamp,
Davis, Kress) algorithm [15]. However, data rebinning
is included in the T-BPF algorithm. Data rebinning not
only introduces errors caused by trilinear-interpolation
but also uses a considerable amount of memory to store
the projection data acquired by the detector at all views
and the rebinned projection data.

In this work, S-BPF was developed for fast recon-
struction from truncated data in circular cone-beam CT.
In S-BPF, the derivative of the projections is firstly back-
projected to the points whose x coordinate is less than
that of the source focal spot to obtain the differentiated
backprojection (DBP). The finite Hilbert inverse [16] is
then applied to each PI-line segment to reconstruct im-
ages from the DBP. Compared with the T-BPF algo-
rithm, S-BPF avoids the influence of the variable integra-
tion interval by selective backprojection instead of data
rebinning. Only one view projection is loaded at any
time in S-BPF. Therefore, the reconstruction efficiency
of S-BPF is considerably higher than that of the BPF al-
gorithm. The memory cost of S-BPF is also considerably
less than that of the BPF and T-BPF algorithms.

Similar to the BPF and T-BPF algorithms, S-BPF
can also use the projection data acquired in a short
scan, which can reduce the dose of radiation and the
time of data acquisition under the same sampling fre-
quency, compared with algorithms in a full scan. S-BPF
can also deal with the truncated projection data, which
can reduce the dose of radiation and achieve local re-
construction, compared with the global reconstruction
algorithm.

This paper is organized as follows. Section 2 describes
the geometrical structure, recalls the BPF and T-BPF
algorithms, and introduces the S-BPF algorithm in de-
tail. Section 3 demonstrates the advantages of S-BPF
based on the results of reconstruction in the simulation
experiment and the real experiment by comparing with
the original BPF algorithm and the T-BPF algorithm.
Finally, Section 4 gives the conclusion.

2 Methods

This section describes the geometrical structure for
the circular cone-beam scan, recalls the BPF and T-BPF
algorithms, and describes S-BPF in detail.

2.1 Geometrical structure

The cone-beam geometry is shown in Fig. 1. Oxyz
represents a Cartesian coordinate system of the world.
Z is the rotation axis of the scanner. S(β) is the po-
sition of the source focal spot in the Oxy plane and is
uniquely determined by the angular parameter β. The

position of the source focal spot can be expressed using
the following equation:

S(β)=R·(sinβ,cosβ,0), β∈[βstart,βend], (1)

where R is the distance between the origin of the Carte-
sian coordinate system of the world and the source, and
βstart, βend correspond to the starting and ending points
of the circular orbit respectively. Projection data are
collected on a flat-panel detector. (a,b) represents the
local Cartesian coordinate system of the detector. The
distance between the source and the detector is fixed,
and the origin of the Cartesian coordinate system of the
detector is at the line which is determined by the source
and the origin of the Cartesian coordinate system of the
world. Every X-ray and its projection can be uniquely
determined by P (β,a,b).

Fig. 1. The geometrical structure for circular cone-
beam scan.

2.2 BPF and T-BPF

The DBP is described, which is the first of the two
steps in the BPF algorithm [11] and it can be obtained
by backprojecting the derivative of the projections, as
shown in Formula (2):

b(~r)=

∫βend

βstart

P ′(β,ar,br)dβ, (2)

where ~r denotes any point on a PI-line, P ′(φ,ar,br) =
∂P (φ,ar,br)/∂ar, and [βstart,βend] denotes the view-angle
integration interval of backprojection. In general, we
make every PI-line parallel to the Y axis, and every PI-
line can be uniquely determined by PI(x,z) (the same
applies to T-BPF and S-BPF). Therefore, the integra-
tion interval of backprojection is the same for PI-line
segments on the plane x = k, where k is an arbitrary
constant. The relationship between the PI-line and scan
angle is shown in Fig. 2. βstart and βend are determined
by the plane x=k, as shown in Formula (3):

{

βstart=arcsin(x/R)

βend=π−arcsin(x/R).
(3)
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Fig. 2. Relation between the PI-line and scan angle
in BPF (bottom view for Fig. 1).

The object function f (~r) and b(~r) have the following
relation [11, 17, 18]:

b(~r)=−2πHf(~r), (4)

where Hf presents the Hilbert transform of f . The object
function f (~r) can be obtained by applying the inverse of
the finite Hilbert transform [16]. The BPF algorithm for
CBCT is performed as follows:

1) To load all projections and determine the deriva-
tive of the projection.

2) To select a plane x=k for reconstruction and de-
termine the accordant βstart and βend.

3) To obtain the DBP of the plane x=k, and back-
project the derivative of the projection that corresponds
to β∈[βstart,βend] on the points that are in the plane.

b(~r)=

∫βend

βstart

P ′(β,ar,br)dβ,
−→r ∈{(x,y,z)|x=k}. (5)

4) To perform the finite Hilbert inverse on those PI-
lines in the plane x=k. Repeat step 2 if not all planes
are backprojected.

To improve parallel performance and reconstruction
efficiency, T-BPF is performed by firstly rebinning the
cone-beam data to tent-like parallel-beam data and then
applying the BPF-type algorithm to reconstruct images.

A virtual detector is introduced to describe the for-
mula of rebinning conveniently. It is placed on the center
of rotation and parallel to the real detector. P (β,m,n)
denotes the projection data acquired by the virtual de-
tector and (m,n) is the position on the virtual detector;
The rebinned projection data can be parameterized by
Ptent(θ,s,t), where (s,t) is the position after rebinning.
The rebinning formula is implemented using the follow-
ing equation:

Ptent (θ,s,t)=P

(

θ−arcsin
s

R
,

sR√
R2−s2

,
tR2

R2−s2
)

. (6)

After rebinning, the cone-beam data are arranged
into parallel-beam data on a virtual rectangular detector

plane shown in Fig. 3. In the image reconstruction from
the parallel-beam projection data, the integration limit
of view-angle for backprojection is fixed (from 0 to π) for
every PI-line, and the DBP can be described as

b(~r)=

∫
π

0

P ′

tent(θ,ar,br)dθ. (7)

The T-BPF algorithm for CBCT is performed as follows:
1) To load all projections.
2) To rearrange the cone-beam projection to tent-like

parallel-beam projection and determine the derivative of
the rebinned projection.

3) To obtain the DBP of the f(x), and backpro-
ject the derivative of the rebinned projection that cor-
responds to β∈[0,π] to f(x).

4) To carry out the finite Hilbert inverse on the PI-
line.

Fig. 3. Cone-beam projection data at a view (a)
tent-like parallel projection data at a view after
rebinning (b), where (t,s) are the coordinates on
the virtual detector in T-BPF.

2.3 S-BPF

Backprojection is the most time-consuming part in
the BPF algorithm. T-BPF improves backprojecting ef-
ficiency by rearranging projection data because the vari-
able limit of integration of backprojection is converted to
a fixed limit of integration. However, T-BPF introduces
the data rebinning process. In this paper, we proposed
S-BPF, which improves the backprojecting efficiency by
selective backprojection without rearranging projection
data, reading projection repeatedly from hard disk, or
loading all projections beforehand. S-BPF has greatly
reduced memory cost compared with the BPF and T-
BPF algorithms. S-BPF also greatly reduces the time
cost compared with the BPF algorithm.

We modified Formula (7) to avoid the influence of the
variable limit of integration for the backprojection.

Formula (7) can be described in detail using the fol-
lowing equation:

b(x,y,z) =

∫Xmax

Xmin

δ(x̃−x)·
∫βend

βstart

∫Ymax

Ymin

δ(ỹ−y)
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×
∫Zmax

Zmin

δ(z̃−z)P ′(β,ar,br)dz̃dỹdβdx̃, (8)

where δ(x) is pulse function; Xmin, Xmax, Ymin, Ymax,
Zmin, and Zmax denote the minimum and maximum of
objects in the x, y, and z directions, respectively. To
make the limit of integration the same for every PI-line,
Formula (8) is transformed as follows:

b(x,y,z) =

∫Xmax

Xmin

δ(x̃−x)·
∫2π

0

u(β−βstart)u(βend−β)

×
∫Ymax

Ymin

δ(ỹ−y)
∫Zmax

Zmin

δ(z̃−z)P ′(β,ar,br)

dz̃dỹdβdx̃, (9)

where u(x) is the step function. In this way, integrating
factors dx, dy, dz, and dβ are unattached. Thus, the
order of integration can be changed as

b(x,y,z) =

∫2π

0

∫Xmax

Xmin

∫Ymax

Ymin

∫Zmax

Zmin

u(β−βstart)u(βend−β)

×δ(x̃−x)δ(ỹ−y)δ(z̃−z)P ′(β,ar,br)dz̃dỹdx̃dβ.

(10)

x<Rsinβ can be obtained from the geometry relation
between the angle βstart βend and PI-line as Formula (3).
Thus, Formula (10) can be simplified as follows:

b(x,y,z) =

∫2π

0

∫Xmax

Xmin

∫Ymax

Ymin

∫Zmax

Zmin

u(Rsinβ−x)δ(ỹ−y)

×δ(z̃−z)P ′(φ,ar,br)dz̃dỹdx̃dβ. (11)

No point is backprojected when the source is at the bro-
ken line in Fig. 4. Thus, the projection obtained when
the source is at the broken line does not contribute to
reconstruction, so the limit of integration of β can be cut
short and Formula (11) can be written as follows:

b(x,y,z) =

∫
π−ψ

ψ

∫Xmax

Xmin

∫Ymax

Ymin

∫Zmax

Zmin

u(Rsinβ−x)δ(ỹ−y)

×δ(z̃−z)P ′(φ,ar,br)dz̃dỹdx̃dβ, (12)

where ψ=arcsin(Xmin/R). Compared with the BPF al-
gorithm, S-BPF is performed in such a way that plane
x=k is selected by the projection of every view instead
of the way the projection is selected by plane x = k.

The shadow in Fig. 4 is backprojected by the deriva-
tive of the projection that corresponds to β. Only one
projection is loaded at any time, and every projection
is loaded only one time in memory. After backproject-
ing the derivative of the projection that corresponds to
β ∈ [ψ,π−ψ] (where ψ= arcsin(Xmin/R)), every PI-line
is backprojected by the derivative of the projection that
corresponds to β ∈ [βstart,βend], and the DBP of f(x) is
obtained. The S-BPF algorithm for CBCT is performed
as follows:

1) Determine the ψ.

ψ=arcsin(Xmin/R). (13)

2) Load a projection (β ∈ [−ψ,π+ψ]), and get the
derivative of the projection.

P ′(β,a,b)=
∂

∂a
P (β,a,b). (14)

3) Backproject the derivative of the projection to the
PI-line, where x<Rsinβ.

b(x,y,z) =

∫Rsinβ

Xmin

∫Ymax

Ymin

∫Zmax

Zmin

δ(ỹ−y)δ(z̃−z)

×P ′(φ,ar,br)dz̃dỹdx̃. (15)

4) Proceed to step 5) if all projections (β∈[−ψ,π+ψ])
are used or return to step 2).

5) Carry out the finite Hilbert inverse on the PI-line.

Fig. 4. Relationship between the PI-line and scan
angle in S-BPF (bottom view for Fig. 1).

f (x,y,z)=
1

2π

1
√

(yc2−y)(y−yc1)
×

[∫yc2
yc1

dyc

π(y−yc)

√

(yc2−yc)(yc−yc1)b(x,yc,z)+C

]

, (16)

where yc1 and yc2 denote the y coordinates of the two end points of the PI-line. The constant C is obtained by

C=

2πPπ(x,z)−
∫yc2
yc1

∫yc2
yc1

√

(yc2−y′)(y′−yc1)
√

(yc2−yc)(yc−yc1)

b(x,y′,z)

π(yc−y′)
dy′dyc

∫yc2
yc1

1
√

(yc2−yc)(yc−yc1)
dyc

, (17)
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where Pπ(x,z) denotes the line integral of the object
function along the PI-line PI(x,z), it can be obtained
from the projection data when the PI-line is in the mid-
plane (z = 0). But for off-mid-planes (z 6= 0), we use
Formula (18) as follows:

Pπ(x,y)

=
P (arcsin(x/R),a1,b1)+P (π−arcsin(x/R),a2,b2)

2
, (18)

where (a1,b1) and (a2,b2) indicate the position of the
projection from the view angle arcsin(x/R) and π−
arcsin(x/R) for the point (x,(yc1+yc2)/2,z), which is the
midpoint on the PI-line segment.

3 Implementation and experiment

To testify the advantages of the S-BPF method pre-
sented above, the three algorithms were implemented in
C language for the simulation experiment and the real
experiment. The experiments were performed by using
the CPU(Inter(R) Xeon(R) X5450 @3.00 GHz).

3.1 Simulation experiment

The standard 3D Shepp-Logan head phantom [19]
was used for reconstruction to compare S-BPF with the
T-BPF and BPF algorithms. The length, width, and

height of the head phantom were 7.14331 mm. The dis-
tance between the source and the rotation axis of the
scanner was 477 mm and the distance between the source
and the detector was 1265 mm. The cone-beam projec-
tion data were acquired from a flat-panel detector with
500 pixels×500 pixels and 0.148 mm per pixel. 360 pro-
jection views were uniformly distributed over the 2π cir-
cular trajectory. However, all the algorithms only used
the views in the range of π plus twice the cone angle. The
final reconstruction was done on a 256×256×256 grid.

The root mean square error (RMSE) [20] was intro-
duced to evaluate the reconstruction results, and it can
be written as follows:

RMSE=

√

√

√

√

1

N

N
∑

i=1

[ft(i)−f0(i)]2, (19)

where ft and f0 denote the reconstructed and the refer-
ence images of voxels.

Figure 5 presents the model of Shepp-Logan head
phantom and the reconstruction results of three algo-
rithms for the model. The three orthogonal planes (x=0,
y=0 and z=0) of 3D images reconstructed by the BPF,
T-BPF and S-BPF algorithms were compared. At the
same time, the corresponding profiles on the middle hor-
izontal line are shown in Fig. 6.

Fig. 5. 2D slices in 3D images reconstructed using the BPF, T-BPF, and S-BPF algorithms. The 128th slices of the
plane z=0, plane x=0 and plane y=0 are represented in the first, second, and third rows respectively. The slices of
the Shepp-Logan model and the reconstruction results of the BPF, T-BPF, and S-BPF algorithms are represented
in the first, second, third, and fourth columns respectively.
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Figure 6 and Table 1 show no significant differences
among the reconstruction results of the original BPF
algorithm, the T-BPF algorithm and S-BPF. However,
in the case of serial computing, the S-BPF is more ef-
ficient and memory saving than the BPF and T-BPF
algorithms.

Fig. 6. Profiles of the images shown in Fig. 5 along
the horizontal middle lines. (a), (b), and (c) are
the profiles of the first, second, and third rows of
Fig. 5, respectively.

Table 1. Reconstruction results of BPF, T-BPF,
and S-BPF algorithms.

algorithm size time/min memory/Mb RMSE

BPF 256×256×256 16.05 417.36 0.0708

T-BPF 256×256×256 12.18 753.51 0.0701

S-BPF 256×256×256 11.71 49.23 0.0708

In BPF algorithms, four circles are present in its
backprojection (three are dimensional direction circles
and one is a view-angle circle). The integration limit of
the view-angle is determined by the location of the plane
x=k. Thus, a dimensional direction circle, must be im-
plemented before the view-angle circle, which produces
more calculations of the trigonometric function and the
intermediate variable that corresponds to the y coordi-
nate or z coordinate in backprojection. The above oper-
ations account for the low reconstruction efficiency of the
BPF algorithm. The limit of integration for backprojec-
tion (about π) is required by every plane. Therefore, all
projections must be loaded in the memory before; oth-
erwise, every projection will be read repeatedly from the
hard disk [21].

The T-BPF algorithm avoids the influence of the vari-
able limit of integration for the backprojection by projec-
tion data rebinning. Thus, the T-BPF algorithm has a
higher reconstruction efficiency than the BPF algorithm.
Compared with the BPF algorithm, additional memory
is used to keep the rebinned projection and the memory
cost for the T-BPF algorithm is about twice over that
for the BPF algorithm.

In S-BPF algorithms, the backprojection implemen-
tation not only reduced many repetitive calculations of
trigonometric function, but also invoked no additional
intermediate variables that corresponded to the y coor-
dinate or z coordinate in the backprojection without pro-
jection data rebinning. The memory required by the S-
BPF is considerably less than that required by the BPF
and T-BPF algorithms because all projections for the
BPF and T-BPF algorithms must be loaded to elimi-
nate repeated readings of the projection data [21]. Only
one view of the projection data is loaded for the S-BPF
algorithm at any time.

Contrast experiments of parallel performance for the
three algorithms are performed on the Tesla C1060 GPU
in the environment of CUDA 4.4 runtime API.

No difference can be observed between the images
reconstructed by CPU and GPU (Fig. 7 and Fig. 9).
As shown in Table 2, the time costs for parallel perfor-
mance by the BPF, T-BPF and S-BPF algorithm are
3.245, 0.705, and 0.677 s respectively. The parallel per-
formance of the BPF algorithm is poor because of rela-
tions between a spatial direction circle and the scanning
angle circle in the backprojection. The parallel perfor-
mance of the T-BPF algorithm is better than that of

Table 2. Contrast experiments of CPU and GPU.

reconstruction reconstruction speedup
algorithm size

time cost (CPU)/s time cost (GPU)/s factor

BPF 256×256×256 963.7 3.245 297

T-BPF 256×256×256 730.8 0.705 1036

S-BPF 256×256×256 705.6 0.677 1043

108201-6



Chinese Physics C Vol. 38, No. 10 (2014) 108201

Fig. 7. Reconstructed slice of the three algorithms by parallel computing (GPU). The Shepp-Logan model and the
reconstructed slices of the BPF, T-BPF, and S-BPF algorithms are represented in the first, second, third, and
fourth columns, respectively. On the right, the reconstructed slices using CPU and GPU are represented in the
first and second rows, respectively.

Fig. 8. Profiles of the reconstructed slices along the
horizontal middle lines. (a), (b), and (c) represent
the profiles of the slices reconstructed using the
BPF, T-BPF, and C-BP algorithms, respectively.

the BPF algorithm because the four circles are inde-
pendent in backprojection implementation. The parallel
performance of S-BPF is slightly better than that of the
T-BPF algorithm because no data rebinning is included
and the relations between the scanning angle circle and
a spatial direction circle is eliminated by neglecting some
PI-lines in backprojection implementation.

3.2 Real experiment

Reconstructions of real data were performed for three
algorithms in the case of serial implementation and the
real data were acquired with the cone-beam CT system
which mainly consisted of the flat-panel detector (Varian
4030E, USA) with a pixel size of 0.127 mm, the object
holder (which can be circumvolved) and the X-ray source
(Hawkeye 130, Thales, France).

Experiments were carried out to reconstruct an ROI
of the head phantom and check the capability of the S-
BPF method (Fig. 9). The distance between the source
and the rotation axis of the scanner was 678 mm and
the distance between the source and the detector was
1610 mm. The projection data were acquired from the
flat-panel detector with 3200 pixels ×2304 pixels and
0.128 mm per pixel. 360 projection views were uniformly
distributed over the 2π circular trajectory. The size of
the reconstructed ROI was 700 pixels ×1200 pixels ×500
pixels with 0.107 mm per pixel. The projection view
used by the three algorithms varied from ψ to 180−ψ.
The distance between the rotation axis of the scanner
and the ROI center was 450 pixels (48.15 mm). Thus,
the following equation applies:

ψ=arcsin

(

(450−700/2)×0.107

678

)

×180

π

=9.080◦. (20)
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Fig. 9. The bottom view for ROI.

The data acquired on the detector at any view angle were
not used completely. We only used the middle 1600 pix-
els in the b axe direction. The data type of the projection
data was changed to unsigned short from float.

Figure 10 shows the correctness of S-BPF again by re-

constructing the ROI from the truncated data. As shown
in Fig. 10 and Table 3, the three algorithms with trun-
cated data result in reconstructed images with no signifi-
cant differences, and the advantages on memory cost and
time cost of S-BPF are evident. In the case of compara-
ble reconstruction quality, the reconstruction efficiency
of S-BPF is the highest, and its memory cost is the least
among the three algorithms. In practice, the memory
cost of an algorithm counts. If the memory cost is too
high to be satisfied, some strategies must be introduced,
such as lowering the spatial resolution of the reconstruc-
tion images or decomposing the backprojection by the
limiting of integration of spatial direction. However, the
two resolution results have lower reconstruction quality
or greater time cost.

Large scale reconstruction is needed to reconstruct
the high spatial resolution or large size of ROI. To achieve
large scale reconstruction, BPF and T-BPF require con-
siderable amounts of memory, which cannot be satis-
fied because of limited hardware. For the BPF algo-
rithm, reading projections from the hard disk repeatedly
or block-dividing backprojection must be carried out.
Block-dividing backprojection also involves the reading
projection from the hard disk repeatedly. Therefore, the

Fig. 10. 2D slices in 3D images reconstructed using the BPF, T-BPF, and S-BPF algorithms. The slices of the
plane y=26.86 mm, plane y=54.85 mm and plane y=61.83 mm are represented in the first, second, and third rows
respectively. The reconstruction results of the BPF, T-BPF, and S-BPF algorithms are represented in the first,
second and third columns respectively.
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Table 3. Reconstruction results of BPF, T-BPF,
and S-BPF algorithms.

algorithm size time/min memory/GB

BPF 700×500×1200 668.54 8.54

T-BPF 700×500×1200 249.73 15.77

S-BPF 700×500×1200 213.38 1.67

BPF algorithm must utilize considerably higher time
cost to avoid the high memory cost in the case of large
scale reconstruction. For the T-BPF algorithm, reading
and writing projection on the hard disk must be carried
out repeatedly. The T-BPF algorithm must use block-
dividing data-rebinning (the block is divided by the index
of pixel on the detector). Block-dividing data-rebinning
involves many trigonometric functions or the use of some
memory to store the results of the trigonometric func-
tions that are computed beforehand. The rebinned pro-
jection must be stored on a hard disk after data rebinning
on a block and be read for backprojection. The required
processes will cost longer time to obtain the DBP. In a
word, the T-BPF algorithm must also use a considerably
higher time cost to avoid large memory cost in case of
large scale reconstruction. However, no additional pro-
cess for decomposing the backprojection is needed for
the S-BPF algorithm because of a low memory cost for
S-BPF. Thus, S-BPF can reconstruct considerably faster
than the BPF and T-BPF algorithms in the case of large
scale reconstruction.

4 Conclusion

In the work, S-BPF was developed for image recon-
struction from the truncated data acquired in a short
scan. Two steps are implemented to carry out S-BPF:
firstly, the derivative of projections is backprojected to
the points whose x coordinate is less than that of the
source focal spot to obtain the DBP; then, the finite
Hilbert inverse is applied on each PI-line segment to re-
construct images from the DBP. The S-BPF algorithm
avoids the influence of the variable limit integration by
selective backprojection without projection data rebin-
ning and the need to load all projection data in advance.
Compared with the BPF and T-BPF algorithms, S-BPF
has a higher reconstruction efficiency, better parallel per-
formance and lower memory cost. The approach can also
be applied to practical CT systems and achieve a fast lo-
cal reconstruction from the truncated data acquired in
a short scan. But only a few projections are allowed to
be truncated and the accurate reconstruction cannot be
reached in the case of that one or two end points of the
PI-line are in the object, which is to be reconstructed.
This case can be deal with by DBP-POCS [22, 23] and
SVD-THT [24–26] and the method of obtaining DBP in
this paper can also be used for the two kinds of algorithm
to improve reconstruction efficiency.
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