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Finite-size behavior near the critical point of QCD phase-transition *
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Abstract: It is pointed out that the finite-size effect is not negligible in locating the critical point of quantum

colordynamics (QCD) phase transitions at current relativistic heavy ion collisions. The finite-size scaling form of the

critical related observable is suggested. Its fixed point behavior at critical incident energy can be served as a reliable

identification of a critical point and nearby boundary of QCD phase transition. How to experimentally find the fixed

point behavior is demonstrated by using 3D-Ising model as an example. The validity of the method at finite detector

acceptances at RHIC is also discussed.
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1 Introduction

Quantum colordynamics (QCD) has predicted quark
deconfinement and chiral symmetry restoration at finite
temperature and density [1]. Lattice-QCD has shown
that the transition is at the crossover at the vanishing
baryon chemical potential µB [2]. The QCD based model
indicates that the crossover turns out to be a first-order
phase transition at larger values of µB [3]. The endpoint
of the first order phase transition to the crossover is re-
ferred to as the critical endpoint, or the critical point. All
these show that the transition from the hadron phase to
quark-gluon-plasma (QGP) phase can happen in 3 pos-
sible ways.

The data from current relativistic heavy ion exper-
iments show that the QGP has been formed at RHIC
energies [4]. But the position of the critical point in
the QCD phase diagram is not clear from the theoretical
side. The well defined character of the critical point, the
divergence of correlation length, warrants the possibil-
ity of finding it experimentally. The goal of the beam
energy scan at RHIC, and future heavy ion experiments
at FAIR is aimed to pass through the critical incident
energy.

In relativistic heavy collision, both the size and du-
ration of formed system are finite. From event to event,
the overlapping area, i.e., the formed system size, varies
with impact parameter. For the finite-size system, criti-

cal behavior changes with system size (L). If the system
size is too small, the correlation length can not be fully
developed to cause a phase transition. If the system size
is large enough and the correlation length (ξ) is much
smaller in comparison to system size, the system can
still be considered as infinitely large. The critical be-
havior under thermal limit is available. This is why the
non-monotonic behavior is suggested as an indicator of
the critical point [5–7] in a long period.

Nevertheless, non-monotonic behavior is not unique
to the critical point. In the case of first order phase
transition, or crossover, some observables also show non-
monotonic behavior [2]. The absence of non-monotonic
behavior does not exclude the existence of the critical
point, such as the maximum cluster size in 3D-Ising
model shown in Fig. 1(a).

Moreover, if the correlation length is comparable to
system size, the finite-size effect is not negligible. When

the correlation length is larger than
1

6
of the system size,

it has been shown that the finite-size effect has to be
taken into account [8, 9].

Although, it is still difficult to estimate the size of
the formed system and correlation length at the critical
point in relativistic heavy ion collisions. A rough estima-
tion shows that the system size at freeze-out is less than
12 fm [10, 11]. The correlation length is around 6 fm for
typical nuclear collisions [11, 12]. After considering the
finite evolution time, or finite-size, it is argued that the
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maximum of the correlation length may not be beyond
2–3 fm at the critical point [13–15]. Based on those es-
timations, the ratio of the correlation length to system

size is around
1

6
–
1

2
, which is in the region larger than

1

6
.

So in current relativistic heavy ion collisions at RHIC,
the finite-size effect most probably has to be taken into
account, rather than negligible [11].

In accounting for the finite-size effects, the criti-
cal behavior of all suggested observables, such as the
fluctuations and correlations of transverse momentum,
multiplicity, conserved charges [16], and in particular,
the higher order moments of conserved quantities [17],
should be re-examined under the frame of finite-size be-
havior of the critical point and nearby boundary.

In this, we firstly discuss the finite-size behavior of
the critical point, the first order phase transition, and
the crossover in general. Secondly, we suggest the finite-
size scaling form of the critical related observable in rel-
ativistic heavy ion collisions. Its fixed-point behavior at
critical incident energy can be served as a reliable iden-
tification of the critical point and nearby boundary of
QCD phase transition. We demonstrate how to locate
the fixed point from an experimental observable by using
the 3D-Ising model as an example. Finally, the validity
of the method at finite detector acceptance at RHIC is
discussed.

2 The behavior of finite size scaling and

fixed point

For the second order phase transition, the criti-
cal behavior is well described by finite-size scaling. It
was firstly proposed from phenomenological [18] and
renormalization-group [19] theories, and was approved
by the Monte Carlo results of finite systems in different
universal classes [20]. This scaling form not only de-
scribes the behavior of the observables at different sys-
tem sizes, but also indicates the position of the criti-
cal point and the critical exponents in an infinite sys-
tem. Therefore, from the finite-size scaling of critical
related observables, the position and critical exponents
of the critical point can be precisely extracted. This has
been implemented in locating the critical point of multi-
fragmentation nuclear liquid-gas phase transition [21].

In contrast to the critical point, the finite-size behav-
ior of first order phase transition has not been well under-
stood in general [22]. But the finite-size scaling behavior
of first order phase transition is shown to correspond to
so-called discontinuity fixed points of the renormalization
group transformations, which are characterized by eigen-
value exponents equal to the spacial dimension [23]. Con-
sequently, the finite-size scaling form pertains, and the
scaling exponents are the spatial dimension, in contrary
to the critical exponents of the critical point. The phe-

nomenological theory of finite-size scaling at first-order
phase transition is proposed by K. Binder and D.P. Lan-
dau, and it is found to be in good agreement with Monte
Carlo simulation results [24].

Different from the critical point and the first order
phase transition, at the crossover region, there is no sin-
gularity in all kinds of observables. The observables are
system size independent [2, 25]. But it should be no-
ticed that this holds only when the system size is not
too small. When the system size is very small and the
finite correlation length is comparable with the system
size, the observables will become larger and larger when
the system size becomes smaller and smaller.

Consequently, the formula of the finite-size scaling is:

Q(T,L)=Lλ/νFQ(tL1/ν), (1)

where t=(T−Tc)/Tc represents the reduced temperature
and λ/ν is dependent on the order of the phase transi-
tion. In the experiment, we need to re-built this formula
by using the appropriate variables which are related to
the scaling variables T and L shown in Eq. (1).

In heavy ion collisions, the frozen-out temperature
can be parameterized by the center of mass energy

√
s

[26].
√

s can be taken as the scaling variable if we assume
the frozen out curve is close to the phase transition. The
centrality, i.e., the impact parameter, presents the over-
lapped area of two incident nuclei. It is directly related
to the size of the formed system, and randomly fluctuates
from event to event. The critical related observables are
generally considered to be the fluctuations of conserved
charges, like the baryon number, electric charge, and
strangeness [16, 17, 27]. The incident energy and cen-
trality dependence of some related observables are fully
investigated in current heavy ion experiments [28].

Therefore, the finite-size scaling in nuclear collisions
can be generalized as following. When the size of the
formed matter L is much larger than the microscopic
length scale (which is less than 1 fm) and the incident
energy is near the critical one

√
sc, the critical related

observable, e.g., Q(
√

s,L) in general, can be written in a
finite-size scaling form [18–20],

Q(
√

s,L)=Lλ/νFQ(τL1/ν). (2)

Where τ = (
√

s−√
sc)/

√
sc is the reduced incident en-

ergy. ν and λ are the critical exponents of the correlation
length ξ =ξ0τ

−ν and the observable, respectively. They
characterize the universal class of the phase transition.
Finite-size scaling indicates that the observable at differ-
ent system sizes can be re-scaled to an identical scaling
function FQ with the scaled variable τL1/ν .

At critical energy,
√

s =
√

sc, the scaled variable
(τL1/ν = 0) is independent of system size L, and the
scaling function becomes a constant,

FQ(0)=Q(
√

sc,L)L−λ/ν. (3)
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Fig. 1. (color online) Upper panel: (a) and (b) are the temperature dependence of maximum cluster size and
maximum cluster size scaled by L

d−β/ν , and (c) is the scaling function of maximum cluster size in 3D-Ising model
at different lattice sizes L. Lower panel: the same measures as in corresponding upper panel, but in a sub-system
containing 50% of the lattice sites.

It shows that the fluctuation of a critical related observ-
able is self-similar at different size scales. In this case,
the energy dependence of the observable at various of
system sizes will intersect to this point, i.e., fixed point.
The energy of the fixed point indicates the critical inci-
dent energy. As an example, we show in Fig. 1(b) the
fixed point behavior of the maximum cluster in the 3D-
Ising model, which is supposed to be the same university
of the de-confinement [29]. We can see that the maxi-
mum cluster at different lattice sizes intersect exactly at
the fixed point, i.e., the critical point.

Reversely, if we can find the fixed point from the inci-
dent energy dependence of a properly scaled observable
in heavy ion collisions, which are measured at different
centralities, i.e., system sizes, it will indicate the exis-
tence of the critical point.

In order to find the exponent of the scale, and the
incident energy of the fixed point, we can firstly present
the incident energy dependence of critical related observ-
able at different system sizes, similar to Fig. 1(a). Then
multiply a size factor to the observable Q(

√
s,L), i.e.,

Q(
√

s,L)L−a, and change the parameter a from −∞ to
∞ to see if all size curves interact to a point for a certain
value of a0 at a certain incident energy, e.g., Fig. 1(b).

In the experiment, the point liked behavior can be
quantified by the width of all size points. At a given in-
cident energy, the width is usually defined as the square
root of χ2 of all size points, i.e.,

D(
√

s,a)=

√

χ2
Q(

√
s,L)L−a

NL−1
. (4)

NL is the number of points, and χ2
Q(

√
s,L)L−a is the error

weighted variance of all size points,

χ2
Q(

√
s,L)L−a =

NL
∑

i=1

[

Q(
√

s,Li)L
−a
i −〈Q(

√
s,L)L−a〉

]2

w2
i

, (5)

wi = δ
[

Q(
√

s,Li)L
−a
i

]

are the experimental errors of
[

Q(
√

s,Li)L
−a
i

]

, where both the errors of the observ-
able Q(

√
s,Li) and system size L−a

i contribute to.
〈Q(

√
s,L)L−a〉 is also the error weighted mean,

〈Q(
√

s,L)L−a〉=

NL
∑

i=1

Q(
√

s,Li)L
−a
i /w2

i

NL
∑

i=1

1/w2
i

. (6)

For example, in Fig. 1(b), this width at a given
temperature is the distance between two violet arrows.
Therefore, if at a given incident energy, the minimum of
D(

√
s,a) is around 1 at a0, i.e., Dmin(

√
s,a0)∼1, it can

be recognized as an experimental point. While, if it is
larger than 1, there is no point liked behavior.

For the QGP formed system [4], the following 3 cases
should be expected. (1) Dmin(

√
s,a0) at a certain inci-
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dent energy is around 1, and at nearby incident ener-
gies, it is always larger than 1, and correspondingly a0

is not an integer, as the green curve shows in the middle
of Fig. 2. This may indicate the existence of the fixed
point, i.e., the critical point in Eq. (3). The critical in-
cident energy is the energy of the fixed point and the
obtained parameter a0 is the ratio of critical exponents,
i.e., λ/ν=a0, see Fig. 1(b).

In this case, the critical behavior should be further
confirmed by the scaling function,

FQ(τL1/ν)=L−a0Q(
√

s,L). (7)

Here the critical exponent of correlation length ν is a fit-
ting parameter. If the data at all incident energies and
system sizes can be well fitted by the scaling function,
the critical point and the critical exponents are finally
determined, see Fig. 1(c).

(2) Dmin(
√

s,a0) at a certain incident energy is around
1, and at nearby incident energies, it is always larger than
1, and correspondingly a0 is an integer. This also indi-
cates the existence of the fixed point, but scaled power
is a trivial integer. It implies the region of the first order
phase transition. The incident energy of the fixed point
is the transition energy of the first order phase transi-
tion. The scaling function of the observable should be
simply formulated by the spatial dimension, instead of
the critical exponents in Eq. (1).

If a0 is zero, there are two possibilities. It could be
the critical point with the critical exponent λ = 0, like
the Binder cumulant ratio [30], or the region of the first
order phase transition. The final identification is their
specified scaling functions, as discussed above.

(3) Dmin(
√

s,a0) is around 1 at all incident energies
and correspondingly a0 is an integer. This indicates all
size curves are overlapped, and there is in fact no fixed
point. It corresponds to the transition of crossover.

3 Detector effects

It should be stressed that the observables mentioned
here are intensive variables, like susceptibility. If the ob-
servables are extensive variables, such as the fluctuation
of the particle number, 〈(N−N)2〉=TV χ, the trivial size
dependence is included, and can be merged to the power
a.

The size of the formed matter in heavy collisions is
mainly determined by the overlapping area of two inci-
dent nuclei. This area is proportional to the number of
participant nucleons and is quantified as centrality. The
initial size of the formed matter can be approximately
estimated by the square root of the number of partici-
pants,

√

Npart. The maximum size is
√

2NA, NA is the
number of nucleons of incident nucleus. The ratio,

L=
√

Npart/
√

2NA, (8)

presents the relative size of the initial system.
The system size L′ at transition should be larger than

the initial one L and monotonically increase the function
of L, i.e., L′ =cL1+δ with δ >0 in general. Whether we
take L′ or L in Eq. (2), the scaling exponents will be
different, but the position of the critical point will be
the same. So the initial size is a good approximation in
locating the position of the critical point.

It should also be noticed that the detectors at cur-
rent relativistic heavy ion experiments cover a part of
the phase space, and only a part of final state particles
is accepted. Even if the critical related information sur-
vived in the final state observables, whether the finite-
size behavior of detected subsystem is preserved has to
be examined further.

Due to the universality of the phase transition, the
3D-Ising model is extensively used to study the proper-
ties of the QCD deconfinement phase transition in heavy
ion collisions [31]. In this section, the finite size behavior
of a sub-system is demonstrated in the 3D-Ising model.
The size of the sub-system is chosen to be a certain per-
cent of the whole lattice sites. Changing the lattice of
the whole system, the effective sites of the sub-system,
Leff , vary with it. We find that the finite size behavior
of the sub-system remains valid as long as the size of the
sub-system is within the range of finite size scaling.

In the lower panel of Fig. 1, the finite size behavior
of the maximum cluster size at various Leff is presented.
Where the size of the sub-system is 50% of the whole
system. In comparison with the corresponding results of
the whole system shown in the upper panel of Fig. 1, the
susceptibilities of the sub-system is different from that
of the whole one, but the position of the fixed point in-
dicates the same critical temperature, Tc=4.51 J. More-
over, the maximum cluster at different sub-system sizes
is well scaled to an identical scaling function. There-
fore, the suggested finite size behavior should be visi-
ble at a detector with a relatively large acceptance, like
RHIC/STAR.

4 Summary

In summary, it is pointed out that the finite-size ef-
fects are not negligible in locating the critical point of
the QCD phase transition at current relativistic heavy
ion collisions. At the crossover, critical point and first
order QCD phase transition, the finite-size scaling be-
haviors of the critical related observable are suggested.

The critical point of QCD phase transition can be
found by the appearance of the fixed point with a non-
integer power in the scaled size factor, and the finite-size
scaling function of the observable. The region of the first
order phase transition is identified by the fixed point with
an integer power in the scaled size factor and the scaling
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function which is determined by spatial dimension.
At the region of the crossover, the behavior of the

fixed point is absent, and the scaling function reduces to
the incident energy dependence of the observable, which
is system size independent.

At a given incident energy, the width of the observ-
ables at various centralities is suggested as a quantifi-
cation of point liked behavior. The energy dependence

of the width at different orders of phase transitions are
shown. When incident energy scans from high to low,
the deviation of minimum width from point like behav-
ior will indicate the appearance of the critical point.

Finally, for a finite acceptance detector, we demon-
strate that the finite-size behavior of critical related ob-
servables remains valid as long as the detected subsystem
is large enough.
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19 Brézin E. J. Phys., 1982, 43: 15
20 CHEN X S, Dohm V, Talapov A L. Physica A, 1996, 232: 375;

CHEN X S, Dohm V, Schultka N. Phys. Rev. Lett., 1996, 77:
641

21 Berkenbusch M K, Bauer W, Dillman K et al. Phys. Rev. Lett.,
2001, 88: 022701

22 Binder K. Rep. Prog. Phys., 1987, 50: 783
23 van Leeuwen J M J. Phys. Rev. Lett., 1975, 34: 1056; Nien-

huis B, Nauenberg M. 1975, 35: 477; Fisher M E, Berker A N.
Phys. Rev. B, 1982, 26: 2507

24 Binder K, Landau D P. Phys. Rev. B, 1984, 30: 1477
25 Ukawa A. Lecture on Lattice QCD at finite temperature (1993)
26 Cleymans J, Oeschler H, Redlich K et al. Phys. Rev. C, 2006,

73: 034905
27 Jeon S, Koch V. Phys. Rev. Lett., 2000, 85: 2076; Koch V.

arXiv: nuclth/0810.2520
28 Adams J et al. (STAR collaboration). Phys. Rev. C, 2005, 72:

044902; Abelev B I et al. (STAR collaboration). Phys. Rev. C,
2009, 79: 024906
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