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Another representation of the β form of the inhomogeneous

Picard-Fuchs equation *
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Abstract: In this letter we give another representation of the β form in the inhomogeneous Picard-Fuchs equation for

open topological string for some one-parameter Calabi-Yau hypersurfaces in weighted projective spaces. Furthermore,

the corresponding domain wall tensions calculated by using these β forms are consistent with the results that appear

in literature. The β form is essential for the calculation of the D-brane domain wall tension, and a convenient choice of

β forms should simplify the calculation. The freedom of the choice of β forms shows some symmetries in Calabi-Yau

space.
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1 Introduction

Topological string theory, which has mirror sym-
metry between its two different types–A model and B
model, provides a powerful method for calculation of
physical and mathematical data [1, 2]. From the view-
point of mathematics, it can count curves on Calabi-Yau
threefolds in closed topological string, which is Gromov-
Witten invariants. While in the open topological string,
which is linked to the D-brane, it can count holomorphic
disks [3–5]. It can also relate to the Abel-Jacobi map,
which serves as the domain wall tension of D-brane on
the B model [3, 5, 6].

From the viewpoint of physics, it has applications
in various aspects of superstrings and supersymmetric
gauge theories. In the effective theory describing the
Type II string Calabi-Yau compactifications, topological
string theory could also be an important method. For
instance, in closed topological string, it can be used for
computing holomorphic prepotential. While in the open
case, the superpotential related to D-brane can also be
obtained in this way.

The domain wall tension T measures the difference
of superpotential W for two D-brane configurations [7].
The key to solving the superpotential W is through solv-
ing the inhomogeneous Picard-Fuchs equations [5, 8–11].
Let Xz be a family of Calabi-Yau threefolds parame-
terized by one variable z, Ωz and β(z) be a family of
non-zero holomorphic 3-forms and 2-form on Xz respec-
tively. Let L be the Picard-Fuchs operator. Then the

Picard-Fuch equation is

L

∫
Γ

Ω(z)=−
∫
Γ

dβ(z). (1)

In special geometry, the

∫
Γ

Ωz is period. In the closed

topological string, Γ ∈H3(X,Z) is a 3-cycle. From the
Stoke’s theorem, dβz term does not contribute. So the

period

∫
Γ

Ωz satisfies a homogenous Picard-Fuchs equa-

tion. While in open topological string, it is complicated
for consideration of D-Branes and flux compactification.
However, in the Ref. [12, 13], it was pointed out that
the Γ must be a chain which satisfies ∂Γ = C+−C−

and its boundary C± is wrapped by D-branes. Thus,

the open-string period

∫
Γ

Ωz satisfies an inhomogeneous

Picard-Fuchs equation. Following the work [12, 13], the
domain wall tension of a D-brane wrapped on the chain
Γ is proportional to the open-string period

TB(z)=

∫
Γ

Ω̂(z), (2)

here Ω̂(z) is the normalization of the holomorphic 3-form
Ω(z). So the inhomogeneous Picard-Fuchs equation is

LTB(z)=f(z):=−
∫
∂Γ

β, (3)

which is essential for solving domain wall tension (super-
potential) and various mathematical and physical data.
S. T. Yau et al. [6] studied the superpotential in GKZ
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method, and they obtained a formula about the β. An
explicit form of β for quintic in P 4(1,1,1,1,1) was pre-
sented in Ref. [5] and that for hypersurfaces in weighted
projective spaces were given in Ref. [10].

In this paper, we find that the form of β in the above
formula is non-unique. Some attention should be paid
to the different forms of β for two reasons. First, an ap-
propriate form of the β can simplify the calculation of
the D-brane domain wall tension. Second, if the cycle
C± may have singularity, a good choice of the β form re-
quires special attention. We also give another form of β
for quintic in Section 2, and sextic in Section 3. Section
4 is for the other two models Y (6) and Y (8). The last
section is a short summary.

2 The β of Picard-Fuchs equation for

quintic

The one-parameter family of quintic 3-folds is given
as

Y (5)={[x1,...,x5]∈P 4|X=0},

where

X :=
1

5

(
x5

1+x
5
2+x

5
3+x

5
4+x

5
5

)
−ψx1x2x3x4x5, (4)

and z = (5ψ)−5. The corresponding mirror manifold is
resolutions of quotients of this one-parameter family of
the quintic by Z3

5 . To derive the Picard-Fuchs equations,
we use the 4-form on P 4,

ω=
∑

i

(−1)i−1xidx1∧...∧d̂xi∧...∧dx5 (5)

as well as the contraction of ω with the tangent vectors
∂i (i=1,...,5)

ωi=ω(∂i). (6)

A convenient choice of gauge for the holomorphic 3-form
is [1, 5]

Ω(z)=ResX=0Ω̃(z), where Ω̃(z):=
ω

X(z)
, (7)

here Res means residue. The normalization of the holo-
morphic 3-form Ω̂(z) is given as Ref. [5]

Ω̂(z)=

(
5

2πi

)3

ψΩ=

(
5

2πi

)3

ψResX=0

ω

X
. (8)

So the domain wall tension is

TB(z)=

∫
Γ

Ω̂(z)=

∫
Tε

(
5

2πi

)3

ψΩ̃(z), (9)

where Tε is a small tube around Γ . Notice

∂lψω=l!(
5

2πi
)3ψ

∫
Tε

(x1x2x3x4x5)
l

X l+1
ω. (10)

For l=4 we can express it in combination of lower order
derivatives by using the Griffiths-Dwork reduction

d

(
Aiωi
X

)
=

∂iAiω
X

−A
i∂iω
X2

, (11)

and the relation

(1−ψ5)(x4
1x

4
2x

4
3x

4
4x

4
5)

=ψ3x2
1x

2
2x

2
3x

7
4x

3
5∂5X+ψ4x3

1x
3
2x

3
3x

4
4x

3
5∂4X

+ψ2x1x2x
2
3x

6
4x

6
5∂3X+ψx2x

5
3x

5
4x

5
5∂2X

+x4
2x

4
3x

4
4x

4
5∂1X. (12)

After some calculations, we can obtain another form of
the β, denoted as β(5), for the quintic, as follows,

β(5) =
1

X

(
ψx4ω4)+

1

X2

(
7ψ2x1x2x3x

2
4x5ω4+ψx

5
4x5ω5)

+
2

X3

(
ψx3x

5
4x

5
5ω3+6ψ3x2

1x
2
2x

2
3x

3
4x

2
5ω4

+3ψ2x1x2x3x
6
4x

2
5ω5)+

3!

X4
(x4

2x
4
3x

4
4x

4
5ω1

+ψx2x
5
3x

5
4x

5
5ω2+ψ

2x1x2x
2
3x

6
4x

6
5ω3

+ψ4x3
1x

3
2x

3
3x

4
4x

3
5ω4+ψ

3x2
1x

2
2x

2
3x

7
4x

3
5ω5), (13)

which is different from the following β form given in
Ref. [5]

β =
1

X

(
ψx5ω5

)
+

1

X2

(
ψx4x

5
5ω4+7ψ2x1x2x3x4x

2
5ω5

)

+
2

X3

(
ψx3x

5
4x

5
5ω3+3ψ2x1x2x3x

2
4x

6
5ω4

+6ψ3x2
1x

2
2x

2
3x

2
4x

3
5ω5

)
+

3!

X4
(x4

2x
4
3x

4
4x

4
5ω1

+ψx2x
5
3x

5
4x

5
5ω2+ψ

2x1x2x
2
3x

6
4x

6
5ω3

+ψ3x2
1x

2
2x

2
3x

3
4x

7
5ω4+ψ

4x3
1x

3
2x

3
3x

3
4x

4
5ω5

)
, (14)

with the same method as Ref. [5], the inhomogeneous
term f(z) of Picard-Fuchs equation and the domain wall
tension can be obtained as follows,

f(z)=
15

16π
2

√
z, (15)

and

TB(z)=
−4

3

∞∑

m=0

Γ

(
−3

2
−5m

)

Γ

(
−3

2

)
Γ

(
1

2

)5

Γ

(
1

2
−m

)5 z
−(m+ 1

2
),

(16)
which are consistent with the results in Ref. [5].
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3 The β of Picard-Fuchs equation for

sextic

The one-parameter Calabi-Yau hypersurface of de-
gree k = 6 in weighted projected space P 4(1,1,1,1,2),
sextic, is defined as

Y (6)={[x1,...,x5]∈P 4(1,1,1,1,2)|W=0}
where

W=
1

6
(x6

1+x
6
2+x

6
3+x

6
4+2x3

5)−ψx1x2x3x4x5, (17)

and z = 4 ·6−6ψ−6. The mirror manifold is resolution
of quotients of this sextic by the group G = G′/Z6,
G′ =Ker(

∏5

i=1
Z6/νi

→ Z6), where νi are the weights of
coordinates [x1,...,x5]. Similarly, the 4-form is taken as
Ref. [10]

ω=
∑

i

(−1)i−1νixidx1∧...∧d̂xi∧...∧dx5. (18)

The normalization of the holomorphic 3-form is [10]

Ω̂(z)=
3·62

(2πi)3
ψΩ=

3·62

(2πi)3
ψResW=0

ω

W
. (19)

By using the Griffiths-Dwork reduction, we obtain an-
other form of the β, denoted as β(6) here,

β(6) =
6

W 4

(
ψ7x3

1x
3
2x

3
3x

3
4x

4
5ω5+ψ

2x4
1x

4
2x

4
3x

4
4x

2
5ω5

+ψ6x2
1x

2
2x

2
3x

3
4x

5
5ω4+ψ

3x5
1x

5
2x

5
4x

2
5ω3+ψ

4x1x
6
2x

6
4x

3
5ω2

+ψ5x2
1x2x3x

7
4x

4
5ω1)+

2

W 3
(ψ4x6

1x
6
4x5ω5

+3ψ6x2
1x

2
2x

2
3x

2
4x

3
5ω5−2ψx3

1x
3
2x

3
3x

3
4x5ω5

+2ψ5x1x2x3x
7
4x

2
5ω5+3ψ6x2

1x
2
2x

2
3x

3
4x

2
5ω4

+ψ5x2
1x2x3x

7
4x5ω1)+

1

W 2
(x2

1x
2
2x

2
3x

2
4ω5

+6ψ5x1x2x3x
2
4x5ω4+ψ

4x6
1x4ω4

+ψ5x2
1x2x3x4x5ω1)+

1

W
ψ4x1ω1, (20)

which is different from that in Ref. [10], the inhomoge-
neous terms of Picard-Fuchs equation can be obtained
by integrating the β on the curves given in Ref. [10], the
result is

f(z)=
3

2π
2

√
z, (21)

the domain wall tension is consistent with the results in
Ref. [10].

4 The other two models

The other two Calabi-Yau hypersurfaces are Y (8) and
Y (10). They are very similar to sextic, for more details
see Ref. [10]. We just list the last results.

Y (8) is defined as

Y (10)={[x1,...,x5]∈P 4(1,1,1,1,4)|Y =0}

where

Y =
1

8
(x8

1+x
8
2+x

8
3+x

8
4+4x2

5)−ψx1x2x3x4x5. (22)

We obtain the β form, denoted as β(8) here, which is
different from that in Ref. [10]

β(8) =
6

Y 4
[ψ10x3

1x
3
2x

3
3x

3
4x

4
5ω5+ψ

9x2
1x

2
2x

2
3x

3
4x

4
5ω4+ψ

6x7
1x

7
2x

7
4x5ω3+ψ

7x8
1x2x

8
4x

2
5ω2+ψ

8x2
1x2x3x

9
4x

3
5ω1+ψ

5x6
1x

6
2x

6
3x

6
4x5ω5

+ψ4x5
1x

5
2x

5
3x

5
4x

2
5ω5+ψ

3x4
1x

4
2x

4
3x

4
4x

3
5ω5]+

2

Y 3
[3ψ9x2

1x
2
2x

2
3x

2
4x

3
5ω5+2ψ8x1x2x3x

9
4x

2
5ω5+2ψ9x2

1x
2
2x

2
3x

10
4 x5ω5

+2ψ10x3
1x

3
2x

3
3x

4
4x5ω4−2ψ10x3

1x
3
2x

3
3x

3
4x

2
5ω5+ψ

7x8
1x

8
4x5ω5+ψ

8x9
1x2x3x

2
4x5ω4

+ψ9x3
1x

2
2x

2
3x

2
4x

2
5ω1−6ψ2x3

1x
3
2x

3
3x

3
4x

2
5ω5−3ψ3x4

1x
4
2x

4
3x

4
4x5ω5−ψ4x5

1x
5
2x

5
3x

5
4ω5]

+
1

Y 2
[4ψ8x1x2x3x

2
4x5ω4+2ψ9x2

1x
2
2x

2
3x

3
4ω4−6ψ9x2

1x
2
2x

2
3x

2
4x5ω5+ψ

7x8
1x4ω4

+3ψ8x2
1x2x3x4x5ω1+15ψx2

1x
2
2x

2
3x

2
4x5ω5+3ψ2x3

1x
3
2x

3
3x

3
4ω5]+

1

Y
[ψ7x1ω1−15x1x2x3x4ω5]. (23)

Y (10) is defined as
Y (10)={[x1,...,x5]∈P 4(1,1,1,5,2)|M=0},

where

M=
1

10
(x10

1 +x10
2 +x10

3 +2x5
4+5x2

5)−ψx1x2x3x4x5. (24)
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The β form, denoted as β(10) here, is different from that in Ref. [10]

β(10) =
6

M 4
[ψ12x3

1x
3
2x

3
3x

3
4x

4
5ω5+ψ

11x2
1x

2
2x

2
3x

3
4x

4
5ω4+ψ

10x1x2x
2
3x

6
4x

3
5ω3+ψ

9x1x
10
3 x

5
4x

2
5ω1+ψ

8x9
1x

9
3x

4
4x5ω2

+ψ7x8
1x

8
2x

8
3x

3
4x5ω5+ψ

6x7
1x

7
2x

7
3x

2
4x

2
5ω5+ψ

5x6
1x

6
2x

6
3x4x

3
5ω5+ψ

4x5
1x

5
2x

5
3x

4
5ω5+ψ

3x4
1x

4
2x

4
3x

4
5ω4 ]

+
2

M 3
[3ψ11x2

1x
2
2x

2
3x

2
4x

3
5ω5+2ψ10x1x2x3x

6
4x

2
5ω5+2ψ11x2

1x
2
2x

2
3x

3
4x

2
5ω4

+ψ9x10
3 x

5
4x5ω5+ψ

10x1x2x
11
3 x

2
4x5ω4+ψ

11x2
1x

2
2x

3
3x

2
4x

2
5ω3+7ψ5x6

1x
6
2x

6
3x4x5ω5

−10ψ2x3
1x

3
2x

3
3x

3
4x

2
5ω5−10ψ3x4

1x
4
2x

4
3x

4
4x5ω5−10ψ4x5

1x
5
2x

5
3x

5
4ω5−10ψ5x6

1x
6
2x

6
3x

2
4ω4−ψ6x7

1x
7
2x

7
3x

2
4ω5]

+
1

M 2
[5ψ10x1x2x3x

2
4x5ω4+2ψ10x1x2x

2
3x4x5ω3+35ψx2

1x
2
2x

2
3x

2
4x5ω5+ψ

9x3x
5
4ω3

+5ψ2x3
1x

3
2x

3
3ω5+5ψ3x4

1x
4
2x

4
3ω4+13ψ4x5

1x
5
2x

5
3ω5+10ψ2x3

1x
3
2x

3
3x

3
4ω5]+

1

M
[ψ9x4ω4−35x1x2x3x4ω5]. (25)

The corresponding inhomogeneous terms and the re-
lated D-brane domain wall tensions computed by using
these β forms, respectively, are consistent with the re-
sults in Ref. [10]

5 Summary

In this letter, we discuss the non-uniqueness of the β
form in the inhomogeneous Picard-Fuchs equation, and
give other forms of β for quintic and some one-parameter
Calabi-Yau hypersurfaces in weighted projective spaces,

respectively. Furthermore, the corresponding domain
wall tensions are calculated by using these β forms and
are consistent with the previous work. The β form is im-
portant, since different choices of β form not only show
a kind of symmetry, but also provide a possibility for
simplifying the calculation of the D-brane domain wall
tension, etc. In particular, for some singular chains, the
choice of β form requires special attention.

The author (YANG Fu-Zhong) would like to thank
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