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Elastic scattering of 6He from 12C at 38.3 MeV/nucleon *
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Abstract The microscopic optical potential of nucleus-nucleus interaction is presented via a folding method

with the isospin dependent complex nucleon-nuclear potential, which is first calculated in the framework of

the Dirac-Bruecker-Hartree-Fock approach. The elastic scattering data of 6He at 229.8 MeV on 12C target

are analyzed within the standard optical model. To take account of the breakup effect of 6He in the reaction

an enhancing factor 3 on the imaginary potential is introduced. The calculated 6He+12C elastic scattering

differential cross section is in good agreement with the experimental data. Comparisons with results in the

double-folded model based on the M3Y nucleon-nucleon effective interaction and the few the body Glauber-

model calculations are discussed. Our parameter free model should be of value in the description of nucleus-

nucleus scattering, especially unstable nucleus-nucleus systems.
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1 Introduction

The nucleus-nucleus potential is a quantity of im-

portance not only for the description of elastic cross

sections but also as an ingredient in the description

of all the phenomena which occur when two nuclei

collide[1]. The study of a nucleus-nucleus optical po-

tential is one of the fundamental subjects in nuclear

physics. In particular, it is very important to un-

derstand the complex optical potential for compos-

ite projectiles from a microscopic point of view not

only to understand the relevant reaction dynamics in-

volved but also to develop a practical tool for predict-

ing optical potentials of colliding systems for which

the elastic scattering measurement is absent or diffi-

cult, such as in the case of neutron-rich or proton-rich

β-unstable nuclei. In those cases the elastic scattering

can be strongly affected by reaction channels, which

are strongly connected to the elastic channel, such as

collective excitation channels of deformed nuclei or

projectile breakup channels of loosely bound systems.

There exists a strong dynamic polarization effect that

has to be accounted for, that is, coupled-channel (CC)

calculations. In such cases, a microscopic interaction

model serves as a tool for providing the “bare” op-

tical potential to be used in CC calculations, rather

than the net optical potential which includes dynamic

polarization effects[2].

A fully microscopic calculation of the nucleus-

nucleus interaction is quite complicated. One of the

simplest and most practical tools for constructing the

microscopic optical potential between complex nuclei

is the double folding model (DFM). In the DFM, an

effective nucleon-nucleon (NN) interaction in the nu-

clear medium is doubly folded with nucleon density

distributions in projectile and target nuclei. One of

the most successful effective NN interactions is the

so-called M3Y G-matrix interaction[3] or its density-

dependent version, CDM3Y6[4]. The DFM with the

CDM3Y6 interaction, however, provides us only with

the real part of the nucleus-nucleus potential. An

imaginary potential must be added to the real DFM
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potential by hand. The imaginary potential is nor-

mally assumed to have some suitable functional

form[5, 6], such as a Woods-Saxon form or its deriva-

tive, and the potential parameters included are de-

termined phenomenologically so as to reproduce the

experimental data of the elastic scattering. In the

past DFM[1, 7, 8] has been widely used to generate the

real part of nucleus-nucleus optical potentials, while

the imaginary part of the optical potentials remains

phenomenological.

2 Theoretical framework

Recently a relativistic microscopic optical po-

tential of a nucleon scattering off a nucleus has

been investigated within the framework of the Dirac-

Brueckner-Hartree-Fock (DBHF) approach[9]. A new

decomposition of the Dirac structure of nuclear self-

energy in the DBHF approach was extended to the

calculations in asymmetric nuclear matter. The real

part of the nucleon self-energy in asymmetric nu-

clear matter is calculated with the G-matrix in the

Hartree-Fock approach and the imaginary part of the

nucleon self-energy is obtained by the G-matrix po-

larization diagram. The nucleon-nucleus optical po-

tentials in finite nuclei are related to the self-energy

of nucleon in nuclear matter by means of the local

density approximation (LDA), in which the space

distribution of the optical potential is directly con-

nected with the density and asymmetry parameters

of the nuclear self-energies in the asymmetric nuclear

matter. Nucleon scattering off a nucleus was ana-

lyzed with a Schrödinger-type equation, which was

obtained by eliminating the lower component of the

Dirac spinor in the Dirac equation. A satisfactory

agreement with experimental data was found. En-

couraged by the success of the isospin-dependent op-

tical potentials in the DBHF approach for nucleon-

nucleus scattering[9], we apply this scheme to investi-

gate nucleus-nucleus scattering by a folding method

in this letter. Considering the target as just a scat-

terer, one takes the nucleon-target scattering as an

elementary ingredient. The real and imaginary parts

of the nucleus-nucleus optical potential are obtained

by folding the Schrödinger equivalent potentials of

proton- and neutron-nucleus scattering with the den-

sity distribution of protons and neutrons in the pro-

jectile.

Before we set the stage for the analysis of nucleus-

nucleus elastic scattering data, we give a brief descrip-

tion of our theoretical model. Starting from a bare

NN interaction V , which is fitted to NN scattering

phase shifts and deuteron ground state properties,

the NN effective interaction in the nuclear medium

is calculated by summing up all ladder diagrams in

the DBHF approach. The DBHF G can be decom-

posed into the bare NN interaction and a correlation

term: G =V+∆G[10]. The correlation term is param-

eterized by four vertices: scalar, vector and isoscalar,

isovector. Due to the characteristic of the short range

correlation, they can be described by infinite masses

and finite ratios of strengths to the corresponding

masses. The nucleon self-energies in nuclear mat-

ter are calculated with V and ∆G in the relativistic

Hartree-Fock approach. The exchange term produces

weak energy dependence of the nucleon self-energy,

which takes account of the antisymmetry of the nu-

cleon with all nucleons in the nuclear medium. This

is also responsible for a proper isospin dependence of

the nucleon effective mass. The DBHF nucleon self-

energy in asymmetric nuclear matter has the general

form

Σi(k,kF,β) = Σi
s(k,kF,β)−γ0Σ

i
0(k,kF,β)+

γ ·kΣi
v(k,kF,β) , (1)

where i stands for proton or neutron. β = (ρn −

ρp)/(ρn + ρp), ρn, ρp are the asymmetry parameter,

neutron and proton densities, respectively. On ac-

count of the isovector meson exchanges, the proton

and neutron self-energies are distinguishable. The

imaginary part of the nucleon self-energy can be ob-

tained by the G-matrix polarization diagram. An

effective nucleon interaction was introduced in order

to avoid the difficulties caused by π-meson and sim-

plify the calculation[9]. Four scalar and vector mesons

with density-dependent coupling constants were in-

troduced to reproduce the saturation curves and nu-

cleon self-energies at various densities and asymmetry

parameters calculated with the DBHF G-matrix.

It is well known that the optical potential of a

nucleon in the nuclear medium is equivalent to its

self-energy[11—15]. For finite nuclei the nucleon po-

tential is obtained by means of the LDA, in which

the space dependence of the relativistic microscopic

optical potential (RMOP) is directly connected with

the density of the target nucleus and asymmetry pa-

rameter in asymmetric nuclear matter:

ΣLDA(r,ε) =ΣNM[k,ρ(r),β], (2)

where ΣLDA(r,ε) is the RMOP of a nucleon with an

incident energy ε scattering off a finite nucleus, and

ΣNM is that in nuclear matter at the density ρ and

asymmetry parameter β. The Dirac equation of the

projectile nucleon in the mean field of the target nu-
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cleus can be written as

[α ·k+γ0(M+U i
s )+U

i
0 +VC]ψi =Eψi , (3)

where

U i
s =

Σi
s −MΣi

v

1+Σi
v

, U i
0 =

−Σi
0 +EΣi

v

1+Σi
v

. (4)

In these expressions, M is the nucleons mass, U i
s , U

i
0

are Lorentz scalar potential and time like component

of a four-vector potential, respectively. E = ε+M ,

and ε is the energy of the projectile in the center-of-

mass system. VC is the Coulomb potential.

In order to calculate the experimental observables,

a Schrödinger-equivalent equation for the upper com-

ponent of the Dirac spinor can be obtained by elimi-

nating the lower component of the Dirac spinor in a

standard way[9, 11, 16].
[

p2

2E
+V i

eff(r)+VC(r)+V i
so(r)σ ·L

]

Φi(r) =

E2
−M 2

2E
Φi(r), (5)

where V i
eff and V i

so are the central and spin-orbit part

of the Schrödinger-equivalent potential, respectively,

which are known as the nucleon-nucleus optical po-

tential in the non-relativistic approach. The explicit

expressions for V i
eff and V i

so are

V i
eff =

M

E
U i

s +U i
0 +

1

2E

[

(U i
s )

2
−(U i

0 +VC)2
]

+V i
D ,

V i
so = −

1

2ErDi(r)

dDi(r)

dr
, (6)

where Di(r) =M+E+U i
s −U

i
0−VC and a small Dar-

win term V i
D is usually neglected. The Schrödinger

equivalent potential yields exactly the same scatter-

ing phase shifts as the original relativistic poten-

tial in the four-component Dirac equation. There-

fore we have obtained the microscopic proton- and

neutron-nucleus interaction in the framework of the

DBHF approach, which are complex with both real

and imaginary parts. On account of the isovector me-

son exchanges the microscopic optical potential also

depends on the neutron and proton density distribu-

tions of the target nucleus[9].

In a simple practical approach to deal with a com-

posite particle scattering, one considers the target as

just a scatterer, and the nucleus-nucleus optical po-

tential can be obtained by a folding method. The

proton- and neutron-nucleus optical potentials are

folded with the corresponding proton and neutron

density distributions in the projectile.

VFM(R) =
∑

i=p,n

∫
ρi(ri)V

i
eff(si)dri , (7)

where R is the separation distance between two cen-

ters of the colliding nuclei. ri is the coordinate of the

proton (neutron) at the center-of-mass frame of the

projectile, while si is the vector between the proton

(neutron) in the projectile and the center of mass of

the target, si = R−ri. ρi is the density distribution

of protons (neutrons) at the projectile.

We turn next to the folding method. First, using

the technique of momentum representation developed

in Ref. [17], we convert Eq. (7) to an expression in

momentum space,

VFM(R) =
∑

i=p,n

∫
ρi(ki)V

i
eff(ki)e

ik·Rdki . (8)

This expression becomes much simpler in a spherical

assumption, where the density distributions of pro-

jectile ρi and potential V i
eff are spherical. The Fourier

transformation of those quantities can be calculated

in a one-dimension integral,

V i
eff(k) = 4π

∫
∞

0

j0(kr)V
i
eff(r)r2dr ,

ρi(k) = 4π

∫
∞

0

j0(kr)ρi(r)r
2dr ,

(9)

where j0(kr) is the zero-order spherical Bessel func-

tion. Numerically one could discretize the momen-

tum space and properly choose the momentum basis

functions,

km =mπ/R0, w2
m = (2π)−3k2

m∆km =m2/8R3
0 (10)

The radius R0 is selected to coincide with the upper

limit imposed on the coordinate space integration in

practical calculations. The integral with respect to

the momentum k in Eq. (8) becomes a summation of

series with a limited number m:

VFM(R) =
∑

i=p,n

[

4π
∑

m

w2
mV

i
eff(k2

m)ρi(km)j0(kmR)
]

,

(11)

The advantage of this method is that it can reduce

numerical effort and be easily extended to deformed

and excited states.

With the folding method we can obtain the

nucleus-nucleus microscopic optical potential with

real and imaginary part, simultaneously. To de-

scribe nucleus-nucleus elastic scattering one defines

the folded microscopic optical potential as,

Uopt(R) = ReVFM(R)+ iImVFM(R) , (12)

which appears in a one-body standard Schrödinger

equation,
[

−
~

2

2µ
∇

2 +Uopt(R)+UC(R)

]

χ(R) =Ecmχ(R) .

(13)
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Here, µ is the reduced mass of the pair, Ecm is the

center-of-mass energy of the relative motion[18, 19].

UC(R) is the Coulomb potential, which can be given

as usual by

UC(R) =



















ZPZTe
2

R
R>RC

ZPZTe
2

2RC

(

3−

(

R

RC

)2
)

R6RC

, (14)

where ZP and ZT are the charge numbers of the pro-

jectile and target respectively, RC = r0(A
1/3
P +A1/3

T )

is the Coulomb radius of two charged spheres, r0 =

1.2 fm, AP, AT are the mass numbers of the projec-

tile and target, respectively. Eq. (13) is solved in a

partial wave expansion and the Noumerov method is

adopted for the integration of the radial equation.

In this letter we apply this method to analyze re-

cent experimental data on 6He scattering off 12C at

the bombarding energy Elab = 229.8 MeV at GANIL.
6He is a halo nucleus with a dispersed neutron distri-

bution. We adopt a halo-type density[4], which was

obtained by three-body model calculations[20].

ρp(r) = 2e−(r/a)2/π3/2a3 ,

ρn(r) = 2e−(r/a)2/π3/2a3 +

4(e−(r/b)2/3π3/2b5)r2 , (15)

with a = 1.55 fm, b = 2.24 fm. A two-parameter

Fermi function is used for the density distribution of
12C[4],

ρ(r) =
ρ0

1+exp((r−r0)/a)
, (16)

with r0 = 2.1545 fm and a = 0.425 fm. The density

is normalized to the atomic number of 12C, then ρ0

is determined as 0.207 fm−3. The real and imaginary

parts of the optical potential Uopt(R) for 6He+12C

reaction at 229.8 MeV are calculated by folding the

isospin dependent microscopic optical potentials in

p(n)+12C with the density of 6He. In our calculations,

the radius R0=15 fm is chosen and the convergence

is tested, which is shown in Fig. 1. It is shown that

the convergence is easily reached if m > 20. Then

R0 = 15 fm and m=25 are chosen in the following

calculations.

Fig. 1. Test of the convergence in the momentum basis function. The left panel shows the radial distribution

of the folded potential with various momentum functions, where only the neutron density in the projectile

is included in the calculations. The right panel illustrates the values of the folded potential at R = 0.05, 2

and 6 fm change with the number of the momentum basis function.

Since 6He is a loosely bound nucleus, a breakup

process is one of the main processes in the reaction,

which is not considered in the microscopic optical

potential of p(n)+12C. The imaginary part of the

p(n)+12C optical potential was calculated from the

polarization diagram of the G-matrix, which takes

account of only the processes of particle-hole-type

excitations[9]. Thus the calculated imaginary part of

the optical potential in the reaction of 6He+12C is

much too weak. It is well known that for a weakly

bound or halo nucleus its particle threshold is close

to the ground state, which implies a strong coupling

to the continuum during the interaction of the nu-

cleus with a target. A special treatment of the in-

teraction potential to consider explicitly transitions

to the low-lying excited states, to the resonances and

breakup states is required, which is usually called the

dynamic polarization potential (DPP). In the reac-

tion of 6He+12C, besides the breakup of 6He into the

2n+α channel, other complicated processes involving

the core breakup will also contribute to the imaginary

part of the potential. In order to describe the exper-

imental data of the 6He+12C scattering at ELab =

229.8 MeV, one introduces phenomenologically a fac-
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tor NI = 3.0, which is just an enhancing factor of the

imaginary part of the optical potential,

Uopt(R) = ReVFM(R)+ iNIImVFM(R) . (17)

The real and imaginary parts of the optical potential

in the 6He+12C scattering at ELab = 229.8 MeV are

shown in Fig. 2, where the imaginary part is multi-

plied by a factor of 3.

Fig. 2. The real and imaginary parts of the

optical potential in the elastic scattering of
6He+12C at 229.8 MeV. The density distri-

butions of 12C and 6He adopted in the calcu-

lation are described in the text. The solid and

dotted curves represent the real and imaginary

potentials, respectively.

3 Discussion and conclusion

The angular distribution in 6He+12C at the bom-

barding energy Elab = 229.8 MeV is shown in Fig. 3.

The differential cross section calculated directly by

the folded potential is plotted in Fig. 3 with a dashed

curve, which could not reproduce the deep minimum

and deviates from the experimental data at the large

angles of 10—30 degrees. The solid curve in Fig. 3

Fig. 3. Angular distribution of the elastic dif-

ferential cross section for 6He+12C scattering

at 229.8 MeV. The solid and dashed curves

show the results of the optical model calcula-

tions with and without the enhancing factor 3

on the imaginary potential, respectively.

corresponds to the result with an enhancing factor 3

in the imaginary part of the folded potential. The

agreement between our theoretical calculation and

the experimental data is impressive, which is rather

encouraging without adjusting more free parameters.

In Fig. 4 we plot the comparison with the re-

sults based on various theoretical models. The dotted

curve was calculated with a double folding model[4].

In this model the real part of the optical potential

was obtained by double folding of the CDM3Y6 effec-

tive nucleon-nucleon interaction, and the imaginary

part was based on a phenomenological Woods-Saxon

type potential with including DPP. In their calcula-

tion a best fit to the experimental data was obtained

by adding a complex surface potential with a repul-

sive real part designed to simulate the polarization

effects caused by the projectile breakup. The dash-

dotted curve corresponds to the calculation in a few-

body Glauber model (FBGM)[21], where the 6He wave

function is factorized as a three-body wave function

consisting of the α core and two neutrons. The target

is considered just a scatterer and the effective phases

in the Glauber model are calculated from a nucleon-

target or a core-target optical potential. It is found

that all models could well reproduce the experimen-

tal data. At forward angles, our results agree with

those of DFM+DPP, while the FBGM produces too

deeper minimum. Our results well describe the posi-

tion of the second minimum in the differential cross

section, but value is slightly weak, and so although

does FBGM. In general our results are closer to the

results of DFM+DPP and the experimental data.

Fig. 4. Same as in Fig. 2 but the dotted,

and dot-dashed curves show the results of

calculated by the double folding model with

CDM3Y + DPP and Glauber model, respec-

tively.

In summary, a microscopic optical model of

nucleus-nucleus interaction is first presented with the

folding model of nucleon-nucleus optical potential ob-

tained in the framework of the DBHF approach. The
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elastic scattering data of 6He at 229.8 MeV on a 12C

target have been analyzed within the standard opti-

cal model. A factor of 3 on the imaginary potential to

take account of phenomenologically the breakup and

complicated processes is introduced. The calculated
6He+12C elastic scattering differential cross section

is in good agreement with the experimental data. A

comparison with the DFM+DPP based on the M3Y

interaction (CDM3Y6) and the FBGM is presented.

Our results could be potentially important for the

description of composite particles scattering of many-

body systems and unstable nucleus-nucleus systems,

especially. Naturally, a further test of our model will

be desired. A more detailed account of our work will

include extensive comparison with the elastic scat-

tering data of several other heavy ion systems, which

will be reported in a forthcoming paper.

References

1 Satchler G R, Love W G. Phys. Rep., 1979, 55: 183

2 Furumoto T, Sakuragi Y. Phys. Rev. C, 2006, 74: 034606

3 Bertsch G, Borysowicz J, McManus H et al. Nucl. Phys. A,

1977, 284: 399

4 Lapoux V, Alamanos N, Auger F et al. Phys. Rev. C, 2002,

66: 034608

5 Chamon L C, Pereira D, Hussein M S et al. Phys. Rev.

Lett., 1997, 79: 5218

6 Alvarez M A G, Chamon L C, Hussein M S et al. Nucl.

Phys. A, 2003, 723: 93

7 Khoa Dao T. Phys. Rev. C, 2001, 63: 034007

8 XU C, REN Z Z. Phys. Rev. C, 2006, 74: 014304

9 RONG J, MA Z Y, Giai N V. Phys. Rev. C, 2006, 73:

014614
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