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A systematic study of the superdeformation of Pb

isotopes with relativistic mean field theory *
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Abstract The microscopically constrained relativistic mean field theory is used to investigate the superdefor-

mation for Pb isotopes. The calculations have been performed with the four different interactions NL3, PK1,

TM1 and NLSH, and show that there exists a clear superdeformed minimum in the potential energy surfaces.

The excitation energy, deformation and depth of the well in the superdeformed minimum are comparable for

the four different interactions. Furthermore the trend for the change of the superdeformed excitation energy

with neutron number is correctly reproduced. The calculated two-neutron separation energy in the ground

state and superdeformed minimum together with their differences are in agreement with the available data.

The larger energy difference appearing in the superdeformed minimum reflects a lower average level density at

superdeformations for Pb isotopes.
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1 Introduction

Superdeformation (SD) of atomic nuclei is one of

the most interesting topics of nuclear structure stud-

ies. Over the past two decades, many rotational

bands associated with SD shapes have been observed

in several regions of the nuclear chart[1], with 85 SD

bands observed in nuclei with 79 < Z < 84 (the

A∼ 190 region) alone, where impressive knowledge on

SD bands has been obtained. Unfortunately, despite

the rather large amount of experimental information

on SD bands, there are still a number of very inter-

esting properties, which have not yet been measured.

The characteristic physical observables are the spin,

parity and excitation energy relative to the ground

state of the SD bands. The difficulty lies in the ob-

servation of the very weak discrete transitions linking

the SD levels with levels of normal deformation (ND

levels). Until now, the transitions linking SD and

ND levels have been observed only in a few nuclei

in the A ∼ 190 region: two bands in 194Hg[2, 3], and

one band in each of 194Pb[4, 5], 192Pb[6], and 191Hg[7].

Less precise measurements have been achieved in
192Hg[8] and 195Pb[9], following the analysis of the

quasi-continuum component of the decay. Recently,

the measurement of the excitation energy of the yrast

(lowest energy for a given spin) SD band in 196Pb

has been reported[10]. Together with earlier measure-

ments of the excitation energies of SD states in 194Pb

and 192Pb, this allows a systematic study of the en-

ergy of the SD well in a single isotopic chain. Many

theoretical models have been employed to study

these superdeformed states of atomic nuclei. The

Strutinsky method with a Woods-Saxon potential[11],

the Hartree-Fock-Bogoliubov method with different

mean field parameterizations[12—14], and the cluster

model[15] have provided predictions on the excitation

energy of SD bands, where a gross trend of decreasing

energy with decreasing neutron number is obtained

for the Pb isotopes. However, the absolute energies

as well as their differences are not consistently repro-

duced by these models as the analysis in Ref. [10]

shows. Given that the relativistic mean field (RMF)

theory[16] has gained considerable success in describ-
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ing many nuclear phenomena for stable nuclei[17, 18] as

well as nuclei even far from stability[19], as discussed

in great detail in the recent review articles[20, 21] and

in the references given therein, it has also been ap-

plied to estimate the excitation energies and well

depths for the SD bands. The data of the SD minima

of 194Hg and 194Pb have been predicted in consid-

erable agreement with experiment[22]. Here we will

report on a systematic investigation of the SD states

for the Pb isotopes by a microscopic, self-consistent

quadrupole deformation constrained relativistic mean

field theory with pairing treated by the BCS method.

Our results show perfect manifestation of the SD

structure in Pb isotopes including the evolution of the

excitation energy, well depth, deformation and shell

structure. Also the ND states are well reproduced.

2 Theory

The starting point of the RMF theory is a stan-

dard Lagrangian density where the nucleons are de-

scribed as Dirac particles which interact via the ex-

change of various mesons including the isoscalar-

scalar σ meson, the isoscalar-vector ω meson and the

isovector-vector ρ meson. The effective Lagrangian

density considered is written in the form:

L = ψ̄i (i 6∂−M)ψi +
1

2
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1

4
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where ψ̄ = ψ†γ0 and ψ is the Dirac spinor. M is

the nucleon mass and mσ(gσ), mω (gω), and mρ (gρ)

are the masses (coupling constants) of the respec-

tive mesons. U(σ) =
1

2
m2

σ
σ2 +

1

3
g2σ

3 +
1

4
g3σ

4 is a

nonlinear scalar self-interaction of σ mesons. The

field tensors for the vector mesons are represented as

Ωµν = ∂µ
ων−∂ν

ωµ, Rµν = ∂µ
ρν−∂ν

ρµ−gρ(ρµ×ρν),

and F µν = ∂µ
Aν −∂ν

Aµ.

The Dirac equation for the nucleons and the

Klein-Gordon type equations for the mesons and the

photon are given by a variational principle and can

be solved by expanding the wavefunctions in terms

of the eigenfunctions of a deformed axially symmet-

ric harmonic-oscillator potential[23] or a Woods-Saxon

potential[24]. The details can be found in Ref. [18] and

references therein.

The potential energy curve can be calculated mi-

croscopically within the constrained RMF theory.

The binding energy at certain deformation value is

obtained by constraining the quadruple moment 〈Q2〉
to a given value µ2 in the expectation value of the

Hamiltonian[25],

〈H ′〉= 〈H〉+ 1

2
Cµ (〈Q2〉−µ2)

2
, (2)

where Cµ is the corresponding Lagrangian multiplier.

For the nuclei studied in this paper a deformed

harmonic oscillator basis has been used, leading to a

very good convergence of the numerical calculation

of the binding energy and deformation. The con-

verged deformations corresponding to different µ2’s

are not sensitive to the deformation parameter β0 of

the harmonic oscillator basis in a reasonable range

if the basis is taken large enough. The different

choices of β0 lead to different iteration numbers of

the self-consistent calculation and different computa-

tion time. Physical quantities such as the binding

energy and the deformation change very little. Thus

the deformation parameter β0 of the harmonic oscil-

lator basis is chosen near the expected deformation

to obtain high accuracy and low computation time.

By varying µ2, the binding energies at different de-

formations can be obtained. The pairing is treated in

the constant gap approximation (BCS), in which the

pairing gap is taken as 12/
√
A for an even number of

nucleons.

3 Numerical results

The four interactions NL3[26], PK1[27], TM1[28]

and NLSH[29] listed in Table 1 are adopted to inves-

tigate the properties of superdeformed states. The

potential energy curves obtained for 190—204Pb are

shown in the Figs. 1, 2, 3, and 4, respectively, where

the energy of the ground state has been taken as a

reference. Ex and V are the excitation energy and

depth of the well of the SD minimum as shown in

the subfigure for 196Pb in Fig. 1. Similar patterns are

found for all the effective interactions. Most of the

Table 1. The parameter sets of interactions NL3, PK1, TM1 and NLSH with the masses in the units of MeV.

Mn Mp Mσ Mω Mρ gσ gω gρ g2 g3 c3

NL3 939 939 508.1941 782.501 763 10.2169 12.8675 4.4744 −10.4307 −28.8851 0

PK1 939.5731 938.2796 514.0891 784.254 763 10.3222 13.0131 4.5297 −8.1688 −9.9976 55.636

TM1 938 938 511.198 783 770 10.0289 12.6139 4.6322 −7.2325 0.6183 71.3075

NLSH 939 939 526.05921 783 763 10.44355 12.9451 4.38281 −6.90992 −15.83373 0
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curves exhibit a clear SD minimum for the Pb iso-

topes, especially for the nuclei with higher neutron

number. For 190,192Pb, the calculated SD minimum

is not very pronounced, it even disappears for the in-

teraction NLSH. For 190Pb, the RMF theory predicts

a considerably higher excitation energy and shallower

well in the SD minimum in comparison with its neigh-

boring nucleus 192Pb, which implies that it is difficult

to form a stable SD state. For 192Pb, although having

a shallower well, it has a relatively low excitation en-

ergy, which indicates that it is relatively easy to form

the SD state as observed in experiment. Starting from
194Pb, the RMF theory predicts that the excitation

energy increases with increasing neutron number to-

gether with an increase of the well depth. So, the

SD states can still be formed in these nuclei, which

agrees with the experimental observations. However

for the N > 118 nuclei the excitation energy is very

high which makes it difficult to excite the SD states.

This may explain why in the Pb isotopic chain one ob-

serves the SD nuclear states only for neutron numbers

between N = 110 and N = 116. Besides the success in

describing SD states, the RMF theory predicts also a

well known interesting feature of the ground state de-

formation, i.e. the evolution of the shape from prolate

to oblate before, and finally to spherical shapes just

when reaching the neutron shell closure at N = 126.

From Figs. 1—4, on can see that the ground state of
190Pb exhibits a coexistence between the prolate and

oblate shape with about a 5 MeV stiff barrier between

them. With increasing neutron number, the ground

state of the Pb isotopes gradually moves towards the

oblate side with smaller and smaller deformation. Fi-

nally a fully spherical 204Pb can be seen.

Fig. 1. The potential energy curves for
190—204Pb obtained by the constrained RMF
theory with the interactions NL3, where the
Ex and V represent respectively for the ex-
citation energy relative to the ground state of
superdeformed minimum and the depth of well
of superdeformed minimum. The ground state
binding energy is taken as a reference.

Fig. 2. The same as Fig. 1, but with PK1.

Fig. 3. The same as Fig. 1, but with TM1.

Fig. 4. The same as Fig. 1, but with NLSH.

The bandhead energies of the SD bands for Pb

isotopes are listed in Table 2. It can be seen that for

the NL3 interactions, the calculated excitation en-

ergies are in excellent agreement with the available

data. The maximum deviation between theory and

experiment is less than 0.34 MeV. For the PK1 inter-

actions, except for a marginal overestimation of the

excitation energy for 192Pb, the theoretical prediction
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Table 2. The SD bandhead energies of Pb iso-
topes Ex as a function of the neutron num-
ber obtained by the constrained RMF calcu-
lations with the interactions NL3, PK1, TM1
and NLSH, in comparison with data available.

Ex/MeV
Pb isotopes

NL3 PK1 TM1 NLSH EXP
190Pb 4.761 6.076 6.454
192Pb 4.259 4.966 5.348 4.011
194Pb 4.764 4.838 3.960 4.643
196Pb 5.969 5.458 4.558 6.478 5.630
198Pb 7.421 6.817 5.863 7.926
200Pb 9.061 8.565 7.407 9.876
202Pb 11.195 10.644 9.091 12.137
204Pb 14.649 13.447 11.417 14.640

is highly consistent with the experiment. With the

TM1 interaction the excitation energy is overesti-

mated for 192Pb and underestimated for 194,196Pb.

Using the NLSH interaction, the RMF theory fails

to reproduce the SD minimum for 192,194Pb. Al-

though there are some deviations between the the-

oretical calculation and the data, the trend of the

change of the excitation energy with neutron num-

ber is correctly reproduced with all effective interac-

tions, which can be seen in Fig. 5. The interaction

TM1 shows the least agreement with the experimen-

tal data, as can be seen from Fig. 5. Starting from
194Pb the excitation energy lies below the experimen-

tal data and the results calculated with the other in-

teractions. Comparing the four interactions, NL3 is

definitely superior to all the other ones in describing

the SD states, despite the fact that the more recently

developed interaction PK1 gives a similar good de-

scription of the ground states of the Pb isotopes with

mass numbers below 200 (see Table 3 and Fig. 5 in

Ref. [27]). In contrast to the RMF calculations, the

Strutinsky method with a Woods-Saxon potential[11],

the Hartree-Fock-Bogoliubov method with different

mean field parameterizations[12—14] and the cluster

Fig. 5. The SD bandhead energies of Pb iso-
topes Ex as a function of the neutron number
obtained by the constrained RMF calculations
with the interactions NL3 (�), PK1 (◦), TM1
(M) and NLSH (O) in comparison with the ex-

perimental data
[10]

(•).

model[15] predict only the gross trend of decreasing

energy with decreasing neutron number. The abso-

lute energies and their differences are not consistently

reproduced by these models. The RMF theory gives a

much better description of the SD excitation energies

of the Pb isotopes.

Besides the excitation energy, the deformation

and well depth of the SD minimum are two other

important parameters characterizing the properties

of the superdeformed states. In particular, the well

depth affects the life time of the superdeformed

states. In Table 3, the quadruple deformations β2

and the depths of the superdeformed minima V in

the superdeformed states for 190—204Pb are listed in

the upper and lower panels, respectively. Except for

a few cases, the deformation of the SD minima lies

systematically in the range between 0.5 and 0.7 for

all the four different interactions NL3, PK1, TM1

and NLSH. This agrees with the observation that su-

perdeformed nuclei adopt ellipsoidal shapes with an

axis ratio around 2:1[1]. The RMF theory predicts

a barrier height lower than 1 MeV for 190,192Pb and

higher than 1 MeV for 196—214Pb for all the consid-

ered interactions. For 194Pb, the estimated barriers

are considerable different for the various interactions.

Table 3. The quadruple deformation β2 and the
depth of the superdeformed minimum V in the
superdeformed states of 190—204Pb obtained
by the constrained RMF theory with the in-
teractions NL3, PK1, TM1 and NLSH.

β2 NL3 PK1 TM1 NLSH
190Pb 0.718 0.719 0.739
192Pb 0.700 0.699 0.718
194Pb 0.658 0.577 0.557
196Pb 0.600 0.578 0.579 0.478
198Pb 0.580 0.561 0.578 0.539
200Pb 0.562 0.558 0.561 0.538
202Pb 0.562 0.541 0.560 0.521
204Pb 0.562 0.541 0.559 0.502

V /MeV NL3 PK1 TM1 NLSH
190Pb 0.464 0.422 0.229
192Pb 0.662 0.348 0.258
194Pb 1.380 0.296 0.599
196Pb 1.602 1.029 1.418 0.469
198Pb 2.177 1.660 1.569 1.517
200Pb 2.836 2.341 1.752 2.178
202Pb 3.259 2.371 1.487 2.173
204Pb 3.515 2.248 1.490 1.967

The two-neutron separation energy defined as

S2n(Z,N) =E(Z,N)−E(Z,N−2) is a sensitive quan-

tity to test a microscopic theory. Here E(Z,N) is

the binding energy of a nucleus with proton num-

ber Z and neutron number N . In Table 4 the calcu-

lated two-neutron separation energies in the ground
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state S2n,ND and SD minimum S2n,SD for the Pb iso-

topes are shown in comparison with the experimental

data[10, 30]. It can be seen that the RMF calculations

with all the four different interactions reproduce the

experimental data for S2n,ND quite well. The maxi-

mum deviation between the calculations and data is

less than 1.7 MeV, especially for the NL3, the devia-

tions are within 1 MeV. The calculated S2n,SD are for

all four interactions close to the available data. Both,

the calculations and the experimental data show that

S2n,ND and S2n,ND vary smoothly with the neutron

number. No sharp drop in the binding energy is seen

in the S2n, which indicates that in the Pb isotope

chain no significant shell gap appears in the ground

state or SD state.

Table 4. Two-neutron separation energy in the
ground state and superdeformation minimum
obtained by the constrained RMF theory with
the interactions NL3, PK1, TM1 and NLSH,
in comparison with data available.

S2n,ND/MeV
N

NL3 PK1 TM1 NLSH EXP

110 17.862 16.915 16.716 17.984 18.400

112 17.537 17.207 17.135 17.444 17.810

114 17.173 16.885 16.636 17.255 17.320

116 16.739 16.440 16.124 16.899 16.820

118 16.287 16.050 15.595 16.652 16.295

120 15.709 15.241 14.886 15.150 15.837

122 16.360 15.287 14.927 15.611 15.318

S2n,SD/MeV
N

NL3 PK1 TM1 NLSH

110 18.364 18.025 17.908

112 17.031 17.334 18.436 17.16(4)

114 15.968 16.266 16.037 16.31(4)

116 15.287 15.081 14.820 15.499

118 14.648 14.303 14.051 14.653

120 13.574 13.161 13.202 13.361

122 12.906 12.484 12.601 12.637

In order to reveal further detailed information on

the shell structure, the two-neutron separation energy

differences ∆S2n(Z,N) =S2n(Z,N)−S2n(Z,N+2) are

presented in Table 5 together with the experimental

data[10, 30]. Here ∆S2n,ND and ∆S2n,SD represent the

corresponding quantities for the ground state and su-

perdeformed minimum, respectively. Table 5 shows

that the experimental ∆S2n,ND changes of typically

around 0.5 MeV are, with some exceptions, well re-

produced in the RMF calculations with all the inter-

actions. Compared with the other interactions, NL3

gives a better agreement with the experiment. Only

for 204Pb is the deviation relatively large. Further-

more, the calculated ∆S2n,ND show very little differ-

ences for the nuclei with neutron numbers between

N = 112 and N = 118, consistent with the exper-

imental data. This suggests that there is no shell

closure at N = 112 or N = 114 as predicted by other

calculations. Compared with the ND states, the SD

separation energies S2n are significantly larger than

the typical ND value of 0.5 MeV, possibly reflecting

a lower average level density at superdeformations.

In particular, the ∆S2n,SD are obviously rather differ-

ent for different nuclei. The ∆S2n,SD for these nuclei

with N=112, 114, 118 are much larger than those of

their neighboring nuclei, suggesting a larger shell gap

in the SD states of 112,114,118Pb.

Table 5. Two-neutron separation energy differ-
ence in the ground state and superdeformation
minimum obtained by the constrained RMF
theory with the interactions NL3, PK1, TM1
and NLSH, in comparison with data available.

∆S2n,ND/MeV
N

NL3 PK1 TM1 NLSH EXP

110 0.325 −0.292 −0.419 0.540 0.590

112 0.364 0.322 0.499 0.189 0.490

114 0.434 0.445 0.512 0.356 0.500

116 0.452 0.390 0.529 0.247 0.525

118 0.578 0.809 0.709 1.502 0.458

120 −0.651 −0.046 −0.041 −0.461 0.519

∆S2n,SD/MeV
N

NL3 PK1 TM1 NLSH EXP

110 1.333 0.691 −0.528

112 1.063 1.068 2.399 0.85(8)

114 0.681 1.185 1.217

116 0.639 0.778 0.769 0.846

118 1.074 1.142 0.849 1.292

120 0.668 0.677 0.601 0.724

In summary, the superdeformation in 190—204Pb

has been investigated by the constrained RMF theory

employing all the most commonly used interactions,

i.e., NL3, PK1, TM1 and NLSH. The calculations

show a clear SD minimum at nearly all the poten-

tial energy curves for the Pb isotopes with similar

patterns for all the effective interactions. The trend

of the change of the excitation energies with neutron

number is correctly reproduced. The calculated de-

formation of the SD minima lies systemically between

0.5 and 0.7, and is consistent with the observations

from experiments. The two-neutron separation en-

ergies in the ground state and the SD minimum are

well reproduced, varying smoothly with the neutron

number. Compared with the typical value of 0.5 MeV

for the ND states, the SD separation energies S2n are

significantly larger, possibly reflecting a lower average

level density at superdeformation.
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