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CP Asymmetry Prediction for Neutral Charmed Meson Decays

into CP Eigenstates by Using Amplitude Ratios *

DU Dong-Sheng1)

(Institute of High Energy Physics, CAS, Beijing 100049, China)

Abstract CP asymmetries for neutral charmed meson decays into CP eigenstates are calculated by using

amplitude ratios. The formulas and numerical results are presented. The impact on experiments is briefly

discussed.
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1 Introduction

Up to now, we still do not have any experimen-

tal evidence for CP violation in the charm sector.

Theoretically, the prediction for charm mixing in the

standard model is very small. This leads to small CP

violating effects in charm decays. However, searching

for large mixing and CP violation in charm decays

is still very interesting not only for testing standard

model but also for finding new physics, for a recent

review, see Ref. [1]. Because CP eigenstates are very

special, if D0-D0 decay into the same CP eigenstates,

then the CP violating asymmetry could be enhanced

by interference. Another advantage of CP eigenstates

is that the amplitude ratio A(D0 → f)/A(D0 → f) can

be estimated without computing the amplitudes di-

rectly. This makes the computation of the CP asym-

metries easier. In this paper, we shall concentrate on

the case of CP eigenstates into which charm decays.

2 Time-dependent CP asymmetry

Define

CP |D0〉= |D0〉,

|DS〉= p |D0〉+q |D0〉,

|DL〉= p |D0〉−q |D0〉,

|p|2 + |q|2 = 1 .

(1)

The corresponding eigenvalues of |DS〉, |DL〉 are

λS = mS− i
γS

2
, λL = mL− i

γL

2
.

Assuming CPT invariance, the time-evolved states

are
|D0

p(t)〉= g+(t)|D0〉+
q

p
g
−
(t)|D0〉 ,

|D0
p(t)〉=

p

q
g
−
(t)|D0〉+g+(t)|D0〉 ,

(2)

where

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g
±

=
1

2

(

e−iλ
S

t±e−iλ
L

t
)

=
1

2
e−imt−γ

2
t×

{

ei∆m

2
t−∆γ

4
t±e−i∆m

2
+∆γ

4
t
}

,

∆m = mL−mS , m = (mL+mS)/2 ,

∆γ = γS−γL , γ = (γL+γS)/2 .

(3)

Define the mixing parameter

x =
∆m

γ
, y =

∆γ

2γ
, (4)

then the decay amplitudes for final state f are

A(D0
p(t)→ f) = 〈f |Heff |D

0
p(t)〉=

A(f)
{

g+(t)+λfg−
(t)
}

, (5)
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where

A(f) = 〈f |Heff |D
0〉 ,

A(f) = 〈f |Heff |D
0〉 ,

λf =
q

p

A(f)

A(f)
.

(6)

Similarly, we put

A(f) = 〈f |Heff |D
0〉 ,

A(f) = 〈f |Heff |D
0〉 ,

λf =
p

q

A(f)

A(f)
.

(7)

where f is the CP conjugate state of final state f, and

|f〉= CP |f〉= ηCP|f〉 ,

with ηCP =±1 is the CP eigenvalue (or CP parity).

For the amplitude of D0
p(t)→ f, we have from Eq. (2)

A(D0
p(t)→ f) = 〈f |Heff |D

0
p(t)〉=

A(f)
{

g+(t)+λfg−
(t)
}

. (8)

Now, it is easy to calculate the time-dependent width

Γ (D0
p(t) → f) and Γ (D0

p(t) → f). Using Eqs. (3), (5)

and (8), we have

Γ (D0
p(t)→ f) = |A(f)|

2
{

|g+(t)|2+

2Re
[

λfg
∗

+(t)g
−
(t)
]

+ |λf |
2|g

−
(t)|2

}

,

(9)

Γ (D0
p(t)→ f) =

∣

∣A(f)
∣

∣

2{

|g+(t)|2+

2Re
[

λfg
∗

+(t)g
−
(t)
]

+ |λf |
2|g

−
(t)|2

}

.

(10)

In order to compute λf and λf , we need first to com-

pute the amplitude ratios A(f)/A(f) and A(f)/A(f).

As an example, we consider D0,D0 → K+K−. Draw

the decay diagrams (Fig. 1), we see that if we neglect

the penguin diagram contribution, the D0 and D0 de-

cay diagrams involve only one CKM factor VusV
∗

cs and

V ∗

usVcs, respectively. The only difference of D0 and D0

decay diagrams is that the initial and final particles

change into their CP counterparts. So

A(f)

A(f)
=

A(D0 →K+K−)

A(D0 →K+K−)
= ηCP(K+K−)

V ∗

usVcs

VusV
∗
cs

=

ηCP(K+K−) = +1 . (11)

Fig. 1. Decay diagrams for D0,D0
→K+K−.

In Eq. (11), Vcs and Vus are both real in Wolfen-

stein parametrization for CKM matrix and ηCP(f) is

the CP parity of the final state f. Usually ηCP =±1

for different f. Actually, we can prove that (see the

appendix in Ref. [2]), if the decays of D0 and D0 only

involve one CKM factor respectively, then the ratio

A(f)

A(f)
= ηCP(f)

e−iϕ
wk

eiϕ
wk

= ηCP(f) . (12)

The last equality holds only for charm decay because

all the CKM matrix elements involved are real, if we

neglect the penguin contribution.

Define

ρf =
A(f)

A(f)
, ρ

f
=

A(f)

A(f)
. (13)

From Eqs. (6) and (7), we have

λf =
q

p
ρf = ηCP(f)

∣

∣

∣

∣

q

p

∣

∣

∣

∣

e−iϕ ,

λf =
p

q
ρ

f
= ηCP(f)

∣

∣

∣

∣

p

q

∣

∣

∣

∣

eiϕ .

(14)

After a straightforward calculation we arrive at

Γ (D0
p(t)→ f) =

1

4
e−γt|A(f)|2

{(

1+

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2)

×

(e−
1

2
∆γt +e

1

2
∆γt)+2

(

1−

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2
)

cos∆mt+

2ηCP(f)

∣

∣

∣

∣

q

p

∣

∣

∣

∣

[

(e−
1

2
∆γt +e

1

2
∆γt)cosϕ+

2sinϕsin∆mt
]

}

, (15)
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Γ (D0
p(t)→ f) =

1

4
e−γt|A(f)|2

{

(

1+

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2
)

×

(e−
1

2
∆γt +e

1

2
∆γt)+2

(

1−

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2
)

cos∆mt+2ηCP(f)×

∣

∣

∣

∣

p

q

∣

∣

∣

∣

[

(e−
1

2
∆γt +e

1

2
∆γt)cosϕ−2sinϕsin∆mt

]

}

.

(16)

Assume

|A(f)|= |A(f)| . (17)

This is guaranteed by our approximation of neglect-

ing the penguin, because in that case only one CKM

factor appears
[3]

.

The time-dependent CP asymmetry is

Cf(t) =
Γ (D0

p(t)→ f)−Γ (D0
p(t)→ f)

Γ (D0
p(t)→ f)+Γ (D0

p(t)→ f)
≡

Nf(t)

Df(t)
, (18)

Nf(t) =

(

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

−

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2
)

(e−
1

2
∆γt +e

1

2
∆γt)−

2

(

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

−

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2
)

cos∆mt+

2ηCP(f)

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

−

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

(e−
1

2
∆γt−e

1

2
∆γt)cosϕ+

4ηCP(f)

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

+

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

sinϕsin∆mt , (19)

Df(t) =

(

2+

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

+

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2
)

(e−
1

2
∆γt +e

1

2
∆γt)+

2

(

2−

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

−

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2
)

cos∆mt+

2ηCP(f)

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

+

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

(e−
1

2
∆γt−e

1

2
∆γt)cosϕ+

4ηCP(f)

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

−

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

sinϕsin∆mt . (20)

In Eqs. (19) and (20), there are several parameters we

need to know: the phase ϕ, x = ∆m/γ, y = ∆γ/2γ,

|q|/|p|, etc. But we do know that |x| ∼ |y|. 10−2, and

|q|/|p| is very close to unity. Some people assume
[4]

that |q|/|p|− |p|/|q| . ±1%. As for the phase ϕ, we

just keep it as a free parameter. For e±
1

2
∆γt, using

∆γ/(2γ) = y, we have e±
1

2
∆γt = e±yγt = e±yt/τ

D0 , be-

cause y . 10−2, e±yt/τ
D0 is around unity. Thus we

have

Nf(t) ' −4ηCP(f)

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

−

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

(yγt)cosϕ+

8ηCP(f)sinϕsin∆mt , (21)

Df(t) ' 8 , (22)

Cf(t)≈

ηCP(f)

{

yγt

2

(∣

∣

∣

∣

p

q

∣

∣

∣

∣

−

∣

∣

∣

∣

q

p

∣

∣

∣

∣

)

cosϕ+sinϕsin∆mt

}

=

ηCP(f)

{

1

2
yγt

(∣

∣

∣

∣

p

q

∣

∣

∣

∣

−

∣

∣

∣

∣

q

p

∣

∣

∣

∣

)

cosϕ+sinϕsin(xγt)

}

.

(23)

In Ref. [3], the first term in Eq. (26) is omitted and

the CP parity factor ηCP(f) is missing.

3 Time-integrated CP asymmetry

In order to have more statistics, we integrate the

time-dependent observables with time. We first list

some useful quantities:

G+ =

∫
∞

0

dt |g+(t)|2 =
2+x2−y2

2γ(1+x2)(1−y2)
≈

1

γ
, (24)

G
−

=

∫
∞

0

dt |g
−
(t)|2 =

x2 +y2

2γ(1+x2)(1−y2)
≈

x2 +y2

2γ
,

(25)

G+−
=

∫
∞

0

dt g∗

+(t)g
−
(t) =

−y(1+x2)+ix(1−y2)

2γ(1+x2)(1−y2)
≈

−y+ix

2γ
, (26)

for x2, y2 � 1. It is straightforward to get the inte-

grated decay width. From Eqs. (9) and (10) we have

Γ (D0
p → f) =

∫
∞

0

dt Γ (D0
p(t)→ f) =

|A(f)|2
{

G+ +2Re(λfG+−
)+ |λf |

2G
−

}

,

(27)

Γ (D0
p → f) =

∫
∞

0

dt Γ (D0
p(t)→ f) =

|A(f)|2
{

G+ +2Re(λfG+−
)+ |λf |

2G
−

}

.

(28)

Again we assume |A(f)| = |A(f)|, then the time-

integrated CP asymmetry is

Cf =
Γ (D0

p → f)−Γ (D0
p → f)

Γ (D0
p → f)+Γ (D0

p → f)
≡

Nf

Df

, (29)
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Nf = −2ηCP(f)

[

y

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

−

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

cosϕ−

x

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

+

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

sinϕ

]

+

(x2 +y2)

(

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

−

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2
)

, (30)

Df = 4−2ηCP(f)

[

y

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

+

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

cosϕ+

x

(∣

∣

∣

∣

p

q

∣

∣

∣

∣

−

∣

∣

∣

∣

q

p

∣

∣

∣

∣

)

sinϕ

]

+

(x2 +y2)

(

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

+

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2
)

≈ 4 . (31)

Finally, neglecting the (x2+y2) term in Eq. (30), one

can obtain

Cf ' ηCP(f)

{

−
y

2

(
∣

∣

∣

∣

q

p

∣

∣

∣

∣

−

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

cosϕ+xsinϕ

}

. (32)

Up to now, we have only discussed incoherent D0-D0

decays. Sometimes D0-D0 pairs are produced coher-

ently, such as in e+e− colliding machines (BES and

CLEO-c).

The time-evolved coherent state of D0-D0 pair can

be written as
[3]

|i〉= |D0(k1, t1)D
0(k2, t2)〉+η|D0(k1, t1)D

0(k2, t2)〉 ,

(33)

where η is the charge conjugation parity or orbital

angular momentum parity of the D0-D0 pair.

Because D0 → l+X and D0 → l−X only, we can

use the semileptonic decay to tagg one of the two

time-evolved states D0
p(t) and D0

p(t). We define the

leptonic-tagging CP asymmetry Cfl as

Cfl =
N(l−, f)−N(l+, f)

N(l−, f)+N(l+, f)
, (34)

where

N(l−, f) =

∫
∞

0

dt1dt2 |〈l−,f |Heff |i〉|
2 (35)

is proportional to the number of events in which

D0
p(k,t) → l−X as tagging in one side and the other

side is the decay D0
p(k,t)→ f or vice versa. Similarly,

N(l+, f) =

∫
∞

0

dt1dt2 |〈l+,f |Heff |i〉|
2 . (36)

Assuming |A(f)| = |A(f)| and |A(l+)| = |A(l−)|, after

a tedious calculation, we have

N(l−, f) =|A(l−)A(f)|2
{

G2
+ +G2

−
+2|λf |

2×

[G+G
−

+η|G+−
|2]+2(1+η)G

−
Re(λfG

∗

+−
)+

2(1+η)G+Re(λfG+−
)+2ηRe(G2

+−
)
}

,

(37)

N(l+, f) =|A(l+)A(f)|2
{

G2
+ +G2

−
+2|λf |

2×

[G+G
−

+η|G+−
|2]+2(1+η)G

−
Re(λfG

∗

+−
)+

2(1+η)G+Re(λfG+−
)+2ηRe(G2

+−
)
}

,

(38)

After taking the same approximation,finally we have

Cfl =
Nfl

Nfl

= (1+η)ηCP(f)×

{

−
y

2

(
∣

∣

∣

∣

q

p

∣

∣

∣

∣

−

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

cosϕ+xsinϕ

}

. (39)

Comparing Eq. (39) with Eq. (32), we find that Cfl is

just twice as large as Cf when the charge conjugation

parity or the orbital angular momentum l is even.

This is surprising. From Eq. (32), the order of mag-

nitude of Cf is . 10−3, because x ∼ y . 10−2. Now

we present Cf (theory), Cf (exp.), branching fractions

for D0, D0 decay into CP eigenstates and the num-

ber of D-D pairs needed for testing CP asymmetry

for 1σ signal lower bound in Table 1, where for the

Table 1. The number of DD pairs needed for testing CP asymmetry.

D0
→ f Cf (theory) Cf (exp.) BR N

DD
(1σ lower bound)

K+K− 0.014±0.010 (3.84±0.10)×10−3 2.60×107

KsKs −0.23±0.19 (3.7±0.7)×10−4 2.70×108

K∗+K∗− 1.0×10−2(BSW) 1×107

π+π− . 10−3 0.013±0.012 (1.364±0.032)×10−3 7.4×107

π0π0 0.00±0.05 (7.9±0.8)×10−4 1.26×108

ρ0π0 (3.2±0.4)×10−3 3.13×107

ρ+ρ− 1.3×10−2(BSW) 7.69×106

ρ0ρ0 1.2×10−3 (BSW) 8.33×107

φπ0 (7.4±0.5)×10−4 1.35×108

φη (1.4±0.4)×10−4 7.14×108

K∗0K∗0 (7±5)×10−5 1.43×109



1 9 Ï ÚÀ)µ^�Ì'��{ýó¥5ì0fPC�CP ����CP Øé¡5 839

branching ratios we take most of them from the 2006

particle data booklet
[5]

. For K∗+K∗−, ρ+ρ− and ρ0ρ0

final states, we use the BSW theoretical estimation
[6]

.

We use the formula for N
DD

N
DD

=
1

BC2
f

for 1σ signature ;

N
DD

=
9

BC2
f

for 3σ signature .

4 Summary and conclusion

We have computed the time-dependent and time-

integrated CP asymmetry for neutral charmed meson

decays into CP eigenstates. We present CP asym-

metry not only for incoherent D0-D0, but also coher-

ent D0-D0 pairs. We find that the time-integrated

CP asymmetries are very small (order of . 10−3) for

testing the CP asymmetries. We also give the lower

bound for the number of DD pairs needed for test-

ing the CP asymmetries. At present, the integrated

luminosities for e+e− colliders are:

BES/ : 27 pb−1

BES0 : 20 fb−1

CLEO−c : 281 pb−1

for 4 years data taking .

The corresponding DD pairs are

BES/ : 105

BES0 : 107

CLEO-c : 106

.

In Table 1, for D→VV decays, only when both vec-

tor mesons are longitutinally polarized the VV final

states are CP eigen states. For the corresponding

branching ratios in Table 1, we assume that both

longitutinally polarized final states doninate. From

Table 1 we see that the only hope is relying on BES0

and B-factories. At B-factories, because the large

data sample of charmed meson, both time-dependent

asymmetry and time-integrated asymmetry can be

measured. While for BES0, only time-integrated

CP asymmetry can be tested. Of course, if there is

new physics, some surprise may happen. We can also

see from Table 1 that all the measured CP asymme-

tries presently are consistent with zero.

I thank Hai-bo Li, Cai-dian Lü, Mao-zhi Yang and

Zhi-zhong Xing for discussions.
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