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Abstract In this paper, the relativistic Rosen-Morse II potential is investigated by solving the Klein-Gordon

and the Dirac equations with equal attractive scalar s(r) and repulsive vector v(r) potentials. The exact energy

equations of the bound state are obtained by the method of supersymmetric and shape invariance. Finally, a

kind of special potential about Rosen-Morse/ potential is discussed.
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1 Introduction

It is well known that exact energy eigenvalues

of the bound state play an important role in quan-

tum mechanics. Usually, we describe quantum me-

chanical behavior of a particle within non-relativistic

frame. However, when the particle is under strong

field, especially for a strong coupling system, rel-

ativistic effect could become important. Many re-

searchers have solved the Klein-Gordon and the Dirac

equations with equal scalar and vector potentials, and

given the bound state solutions of particles in some

typical potential fields
[1—5]

.

With the exception of the Harmonic Oscillator

and Coulomb potential, Rosen-Morse potential is an

exact solvable potential; this potential is of possible

interest to quark physics so far as it captures the es-

sentials of the QCD quark-gluon dynamics
[6]

. Rosen-

Morse/ potential
[7]

is V (r), i.e.,

V (r) =
B2

A(A+α)
+A(A+α)tanh2(αr)+2B tanh(αr),

(1)

where A, B, and α are constant, and α is a regular

scale factor. The authors
[8]

have solved the Schrö-

dinger equation for more general Rosen-Morse/

potential.

Unfortunately, so far the solutions of the Klein-

Gordon and the Dirac equations with Rosen Morse/

potential have not yet been solved. In this paper,

we assume that the scalar potential s(r) equals to

the vector potential v(r) and solve the Klein-Gordon

as well as the Dirac equations with Rosen-Morse/

potential by using supersymmetric and shape invari-

ance method, and obtain the energy equations of the

bound state. In the case of tanhµ = B/A(A+ α)

and d= 1/α, a kind of special potential about Rosen-

Morse/ potential is discussed, and we obtain such a

result that the harmonic potential is the limit of the

potential, and when B/A(A+α) = 0, the potential

becomes V0 tanh2(r/d) potential, with which Qiang
[4]

has solved the Klein-Gordon equation and the Dirac

equation. Our result is similar to Qiang’s.
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2 Bound-state solution of the Klein-

Gordon equation

For simplicity, the atomic units (~ = c = 1) are

taken, the Klein-Gordon equation with the special

potential is
[9]

[p2−(E−v(r))2]ψ=− [m+s(r)]
2
ψ , (2)

where p is the momentum operator, E and m are the

energy and mass of the particle, v(r) is the vector

potential, and s(r) is the scalar potential, they are

equal to V (r)/2. To find the corresponding relativis-

tic quantum mechanical behavior, we solve Eq. (2) in

spherical coordinate. The radial part is

1

r

∂2

∂r2
(rR(r))+

[

(E2−m2)−

(E+m)V (r)− l(l+1)

r2

]

R(r) = 0 . (3)

When r tends towards infinity, the radial wave

function is equal to zero, and R(r) is finite at r = 0,

so we can set

R(r)r=u(r) . (4)

For s wave, l = 0, using the relation λ = E2 −m2,

accordingly, Eq. (3) has been transformed into

d2u(r)

dr2
−(E+m)

(

B2

A(A+α)
+A(A+α)tanh2(αr)+

2B tanh(αr)

)

u(r) =λu(r). (5)

To solve Eq. (5) we apply the supersymmetric quan-

tum mechanics and shape invariance approach
[10, 11]

.

The ground state wave function u0(r) can be written

in the fashion of

u0(r) = exp

(

−
∫
W (r)dr

)

, (6)

where W (r) is super potential in the super symmetric

quantum mechanics. Substituting the ground state

function into Eq. (5), we obtain an equation about

the ground state energy, namely

W 2− dW

dr
= (E+m)

(

A(A+α)×
(

tanh(αr)+
B

A(A+α)

)2)

−λ0 , (7)

where λ0 is the ground state energy. Eq. (7) is a Ric-

cati equation. The corresponding super potential is

set

W (r) =Q1 tanh(αr)+Q2 . (8)

Substituting the expression Eq. (8) into Eq. (7), we

obtain three equations as follows:

−B
2(E+m)

A(A+α)
−αQ1 +Q2

2 +λ0 = 0 , (9)

−2B(E+m)+2Q1Q2 = 0 , (10)

−A(A+α)(E+m)+αQ1 +Q2
1 = 0 . (11)

Because of the limit of radial wave function boundary

condition, we solve Eq. (10) and Eq. (11), and obtain

Q1 =α

{

−1

2
+

√

1

4
+
A

α2
(A+α)(E+m)

}

, (12)

Q2 =
B(E+m)

Q1

. (13)

Then the ground state function can be expressed as

u0(r) = exp

{

2B(E+m)

−α+
√

α2 +4A(A+α)(E+m)

}

×

cosh(αr)
1
2
−

√
α2+4A(A+α)(E+m)

2α . (14)

By solving Eq. (9), the corresponding ground state

energy is obtained by

λ0 =
B2(E+m)

A(A+α)
+αQ1−

(

B(E+m)

Q1

)2

. (15)

Uniting Eq. (8), Eqs. (12) and (13), we can obtain

the partner potentials

V+(r) = Q2
1 +

(

B(E+m)

Q1

)2

+B(E+m)tanh(αr)+

(α−Q1)Q1sech
2(αr), (16)

V
−
(r) = Q2

1 +

(

B(E+m)

Q1

)2

+B(E+m)tanh(αr)−

(α+Q1)Q1sech
2(αr). (17)

When a0 =Q1, a1 = f(a0) =Q1−α, V+(r) and V
−
(r)

satisfy the following relationship,

V+(r,a0) =V
−
(r,a1)+R(a1), (18)

where R(a1) = Q2
1 +

(

B(E+m)

Q1

)2

− (Q1 − α)2 −
(

B(E+m)

Q1−α

)2

. Eq. (18) shows that the partner po-

tential V
−
(r) is a shape-invariant potential. The
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energy spectra of the potential, hence the shape-

invariant potential are given by

λ−

0 = 0

λ−

n =

n
∑

i=1

R(ai) =Q2
1 +

(

B(E+m)

Q1

)2

−

(Q1−nα)2−
(

B(E+m)

Q1−nα

)2

. (19)

Thus we can have the value of λn in Eq. (5)

λn =
B2(E+m)

A(A+α)
−
(

B(E+m)

Q1−nα

)2

+(2n+1)αQ1−

(nα)2 =−(nα)2 +
B2(E+m)

A(A+α)
+2

(

n+
1

2

)

×

α2

{

−1

2
+

√

1

4
+
A

α2
(E+m)(A+α)

}

−

B2(E+m)2

α2

(

(

1

2
+n

)

−
√

1

4
+
A

α2
(E+m)(A+α)

)2 . (20)

3 Bound states solution of Dirac equa-

tion

The Dirac equation with scalar potential s(r) and

vector potential v(r) is (~ = c= 1)

{α •p+β[m+s(r)]}Ψ = [E−v(r)]Ψ . (21)

In relativistic quantum mechanics, the complete con-

servative quantity set of a particle in a central field

can be taken to be (H, K, J2, Jz), the eigenfunctions

of which are
[12]







































Ψ =
1

r





F (r)φA
jmj

iG(r)φB
jmj



 K=

(

j+
1

2

)

,

Ψ =
1

r





F (r)φB
jmj

iG(r)φA
jmj



 K=−
(

j+
1

2

)

,

(22)

where






































φA
jmj

=
1√

2l+1





√
l+m+1Ylm

√
l−mYl(m+1)



 ,

φB
jmj

=
1√

2l+3





−
√
l+1−mY(l+1)m

√
l+1+m+1Y(l+1)(m+1)



 ,

and K is the spin-orbit coupling angular momentum

defined as K =±
(

j+
1

2

)

for l= j± 1

2
. The terms Ψ

in Eq. (21) are replaced by Eq. (22), accordingly, we

can obtain the radial part of the Dirac equation,



















dF

dr
−K

r
F = (m+E)G,

dG

dr
+
K

r
G= (m−E+V (r))F.

(23)

By eliminating G(r), a second-order differential equa-

tion for F (r) is obtained.

d2F

dr2
−K(K−1)

r2
F+

(

(E2−m2)−(E+m)V (r)
)

F = 0 .

(24)

For s wave, i.e., K = 1. Eq. (24) becomes

d2F

dr2
+
(

(E2−m2)−(E+m)V (r)
)

F = 0 , (25)

Eq. (25) is identical with Eq. (5). Hence, we can

obtain the energy equation with Rosen-Morse/ po-

tential, i.e.

λn =−(nα)2 +
B2(E+m)

A(A+α)
+2

(

n+
1

2

)

×

α2

{

−1

2
+

√

1

4
+
A

α2
(E+m)(A+α)

}

−

B2(E+m)2

α2
(

(

1

2
+n

)

−
√

1

4
+
A

α2
(E+m)(A+α)

)2 . (26)

4 Discussion

If we take tanhµ=B/A(A+α) and d= 1/α, then

Eq. (1), namely the potential is

V (r) =V0 cosh2µ
{

tanh
(r

d

)

+tanh(µ)
}2

, (27)

where V0 = A(A+α)− B2

A(A+α)
, and V0 is positive

when A(A+α)>B. This potential field has its min-

imum value at r = 0. As r is increased positive,

the potential rises to an asymptotic value V0e
2µ for

r→+∞. When a particle of the order of a few hun-

dred MeV moves in the potential valley, some of the

allowed energies will be discrete values. After a se-

ries of calculation we obtain the bound–state energy
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spectrum, namely,

λn =−(nα)2 +(E+m)V0 sinh2µ+2

(

n+
1

2

)

×

α2

{

−1

2
+

√

1

4
+
V0 cosh2µ

α2
(E+m)

}

−

V 2
0 (E+m)2 sinh2[2µ]

4α2
(

(

1

2
+n

)

−
√

1

4
+
V0 cosh2µ

α2
(E+m)

)2 . (28)

When the particle moves in the bottom of the po-

tential valley, its radial coordinate r is far smaller

than the scale factor d, we expand Eq. (1) for r small

near the potential minimum at r= 0,

V (r)≈ (r/d)2V0sech
2µ+ · · · ; r� d . (29)

Thus we only take the first term into account, the

form of potential energy is similar to that of harmonic

oscillator. Consequently, the frequency of harmonic

oscillator is ω/2π, where ω =
√

2V0/µd2 cosh2µ, as

well as elastic coefficient k is k = 2V0sech
2µ/d2.

Ref. [2] gives the energy equations of a relativistic

harmonic oscillator potential






































(4n+3+2l)
√
k−(E−m)

√

2(m+E) = 0,

(Klein-Gordon)

(4n+3+2K)
√
k−(E−m)

√

2(m+E) = 0,

(Dirac)

(n= 0,1,2,3, · · ·).

(30)

For s wave, i.e., l= 0 and K = 0, Eq. (30) is uniform

equation

(4n+3)
√
k−(E−m)

√

2(E+m) = 0,(n= 0,1,2, · · ·).
(31)

Then

E=
1

12

(

4m+
214/3m2

q
+24/3q

)

,

where

q = (−32m3 +27k(3+4n)2+

3
√

3
√

k(3+4n)2(−64m3 +27k(3+4n)2)1/3.

Thus it is necessary to discuss energy equation when

r� d. Now, we express Eq. (28) into

1+2n+d
√
E+m×g= 0 , (32)

where

g =
√

V0e2µ +m−E+
√

V0e−2µ +m−E−

2

d
√
m+E

√

1

4
+d2(m+E)V0 cosh2µ .

For the particle moving in the bottom, its (E −m)

is far smaller than its potential maximum V0e
2µ. On

the other hand, when [d2(m+E)V0 cosh2µ] is con-

siderably larger than
1

4
, the last term in g becomes

2
√
V0 coshµ. And then

g≈ (m+E)coshµ√
V0

. (33)

Substituting Eq. (33) into Eq. (32), we obtain the

same energy equation to harmonic oscillator formula,

i.e., Eq. (31).

When d = 1/α and B/A(A+ α) = 0, then the

potential becomes the V0 tanh2(r/d) potential
[4]

,

V (r) =V0 tanh2(r/d), (34)

which is the symmetric case of Eq. (27). Solution for

the potential is

2d
√

(m+E)(V0 +m−E)−
√

1+4d2(m+E)V0 =−1−2n . (35)

Qiang has obtained the bound-state solution of

Klein-Gordon equation and Dirac equation for

V0 tanh2(r/d) potential, our conclusion is similar.

5 Conclusion

In this paper, by applying supersymmetric and

shape invariance technique, we have obtained exact

solutions of bound states for the Klein-Gordon and

the Dirac equations both with equal scalar Rosen

Morse/ potential and vector Rosen Morse/ poten-

tial. Energy Eq. (20) is the relativistic description

of a particle of spin 0 such as K-meson and µ me-

son. Eq. (26) is relativistic description for a particle

of spin 1/2 such as electron, neutron, proton and hy-

peron. Eq. (27) is a special case of Rosen Morse/

potential.

On the other hand, theoretical prediction of many

properties of atoms or molecules requires the knowl-

edge of continuous states and the phase shifts, so
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continuous states for the Rosen Morse/ potential is

very important. We will further try to apply RMF

method
[13]

to calculate the scattering amplitude and

the phase shift for Rosen-Morse/ potential, this

would bring out some complications in solving the

equations, as well as new and interesting physics.

The authors thank the referees for their valuable

comments and suggestions.
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