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Abstract

I report results obtained recently in collaboration with on neutrino mixing (hep-ph/0507217).

Current neutrino oscillation data are consistent with the neutrino mixing angles taking values sin®612 = 1 /3,

sinfa3 = 1/2, and sin®613 = 0. We present a class of renormalizable gauge models which realize such a

geometric mixing pattern naturally. These models, which are based on the non—Abelian discrete symmetry

Ay, place significant restrictions on the neutrino mass spectrum. It is shown that baryogenesis via leptogenesis

occurs quite naturally, with a single phase (determined from neutrino oscillation data) appearing in leptonic

asymmetry and in neutrinoless double beta decay.
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Our understanding of the fundamental properties
of neutrinos has improved dramatically over the last
few years. Atmospheric and solar neutrino experi-
ments have by now firmly established occurrences of
neutrino flavor oscillations!™. Combining all positive
results™ 3], one obtains the following neutrino mass

and mixing pattern (with 20 error bars)®:

Am? = mi—m;=7.92x10"°(1£0.09)eV?, (1)

Am?, = mi-mi=424x10"3(102)eV?, (2)

atm

sin®6, = 0.314(1701%), sin®6a5 =0.44(1133}),

Sin2 913 = 0.91_(0){2)3 X 10_2 . (3)

Here m; are the (positive) neutrino mass eigenvalues,
and 6;; are the neutrino mixing angles. m3 —m?2 > 0

in Eq. (1) is necessary for MSW resonance to occur

2
atm?

inside the Sun. The sign of Am which is physical,
is currently unknown.

A remarkable feature of the oscillation data is that
they are all consistent with a “geometric” neutrino

mixing pattern with the neutrino mixing matrix (the
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MNS matrix) given by* "

S
S-Sl Sl
Sl

1
ﬁ
Here P is a diagonal phase matrix.

In fact, these geometric mixing angles are very
close to the central values of Eq. (3). We observe
that unlike the quark mixing angles, which are re-
lated to the quark mass ratios in many models (eg:
0. =~ \/M), the neutrino mixing angles seem to
be unrelated to the neutrino mass ratios. The pur-
pose of this work is toprovide a deriation of such a
geometric neutrino mixing based on renormalizable
gauge theories.

Our derivation of Eq. (4) will be based on the non—
Abelian discrete symmetry A,, the symmetry group
of a regular tetrahedron. This symmetry group has
found application in obtaining maximal atmospheric

. o = 8 . P .
neutrino mlxmg[ I and in realizing quasi—degenerate
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®1 No successful derivation

neutrino mass spectrum
of Eq. (4) has been achieved to our knowledge (based
on A, or other symmetries) in a renormalizable gauge
theory context. For attempts along this line see
Refs. [4,10,11]. In Refs. [4,6], Eq. (4) was sug-
gested as a phenomenological ansatz. In Ref. [10], a
higher dimensional set up is used to motivate Eq. (4).
Ref. [11] analyzes special cases of an A4 derived neu-
trino mass matrix towards obtaining the structure of
Eq. (4). A large number of models in the literature
have derived maximal atmospheric mixing based on
non-Abelian symmetriesm], but in most models the
solar mixing angle is either maximal (now excluded
by data) or is a free parameter.

The Model.

ergy supersymmmetry, which is motivated by a solu-

We work in the context of low en-

tion to the gauge hierarchy problem as well as by the
observed unification of gauge couplings. The gauge
group of our model is that of the Standard Model,
SU(3)exSU(2)r, xU(1)y. We augment this symme-
try with a non-Abelian discrete symmetry A,. This
order 12 group is the symmetry group of a regular
tetrahedron. A, has a unique feature in describing the
lepton sector: It has one triplet and three inequiva-
lent singlet representations, thus allowing for assign-
ing the left-handed lepton fields to the triplet and
the right-handed charged lepton fields to the three
inequivalent singlets. In addition to the A, symme-
try, we assume a Z, X Z3 discrete symmetry. The
Z,4 is an R-symmetry under which the superpotential
carries 2 units of charge. The Z, and Z3 symmetries
are broken softly in the superpotential via the lowest
dimensional operators.

The lepton and Higgs fields transform under A, x

Z4 X Zs as follows.

L:(3,1,0), e : (1+1'+17,3,0), 1°:(3,0,1),
E:(3,1,0), E<:(3,1,0),

H,:(1,1,2), Hy:(1,0,0),

x:(3,2,0), x':(3,2,1), S;2:(1,2,1).

(5)

Here in the fermion sector we have introduced new
vector-like iso-singlet fields £ and E° transforming
under the SM gauge group as (1,1,—1) and (1,1,1),
respectively, which will acquire large masses and

decouple. H, and H, are the usual Higgs fields

of MSSM, while x,x’,S: 2 are all SM singlet fields
needed for achieving symmetry breaking. The quark
fields (Q,uc,d®) are all singlets of A, with Z, x Z3
charges of Q(1,1);u°(0,0) and d°(1,2), so that the
usual quark Yukawa couplings Qd°Hy + Qu°H, are
allowed in the superpotential.
The superpotential terms relevant for lepton
masses and Higgs superpotential are given by
Wy =MpE E; + foLiE; Ha+ hij Eiefxxt+

1 1 !/ C
ifslVichSrF§fijkaV;Xk+vaiVi H,,

Witigs =AM X1 X2 X3+ Avrs (X + X5 +X5)S1+ (6)
A;’X;X;Xg +>‘5115f + /\SlzsfSQ +>\521S1522+
Assa Ss 178 4 1382 + 11y (X + X5 +X35)-

Here x = (x1,X2,X3), and X" = (X1, x5, X53)- The p?,
terms are the lowest dimensional terms that break the

Zs symmetry softly, while leaving Z, unbroken. The
iy, term is the lowest dimensional term that breaks
the Z, symmetry softly. Such soft breaking can be
understood as spontaneous breaking occurring at a
higher scale. We have chosen without loss of gener-
ality the combination of S; and S, that couples to x’
as simply S; in Eq. (6).

Minimizing the potential derived from Eq. (6) in
the supersymmetric limit, we obtain the following

vacuum structure:

(S2) = v, (S1) =05 (xa) = (X2) = (Xa) = vy;

(X2) = vy, (X1)=0; (x5) =0.

(7)

with v, = —2u, /A, vZ = —p3/(3A,,), and vl =
(Aspy 15=3 Ao 117) / (BAsp5 Ayrs). Electroweak symmetry
breaking is achieved in the usual way by (H,) = v,,
(Hq) = vg. We emphasize that vanishing of certain
VEVs is a stable result, owing to the discrete sym-
metries present in the model. This is important for
deriving the MNS matrix of Eq. (4). We observe that
there are no pseudo-Goldstone modes, as can be seen
by directly computing the masses of the Higsinos from
Eq. (6).

The mass matrices M.p for the charged lep-

tons and M, for the neutral leptons resulting from
Egs. (6) and (7) are given by (in the notation .¥ =
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0 0 0 fus 0 0

0 0 0 0  fuq0
w00 0 0 0 |

hiv, hsvy, hsv, Mg 0 0O

hSv, h$wv, hiw?v, 0 Mg 0

hSv, h§w?v, hfwv, 0 0 Mg

(8)

0O 0 0 fw, 0 0

0 0 0 0  fow.0

0 0 0 0 0 fou
M‘VVC - f v

fova O 0 Vs 0 frrvy

0 fova O 0 fs,0s 0

0 0 Fvu fx’vx’ 0 fS2vS

Since the E and the E° fields acquire large masses,
of order the GUT scale, they can be readily integrated
out. The reduced 3 x 3 mass matrices for the light

charged leptons is given by

m. 0 O . 11 1
M.=U,| 0 m,0 ,UL_% lw w? |, (9
0 0 m. 1w?w

where m; = V/3(fovav,/Mg)he (1+ (hivy)?)/M2) =12,

The light neutrino mass matrix is found to be

1 0 =
Mgt = | 0 1222 0|, (10)
z 0 1
where mo = fivlfo,v/(f2v — f2v3), and © =

—fovyr /(fs,vs). We define x = |z[e'.
MUY can be diagonalized by the transformation
Mgt — 2 D, Ul with

) 1 0 -1
U,=—10 v2 0 | P
7 V2
1 0 1
(11)
|1+ x|
DV:mo |1—.132|

1 -z
P* is a diagonal phase matrix given by

P = diag{e‘im/?, e—i(<151-0-<152)/27 e—i(¢2+7f)/2}’
(12)
¢ = arg(l42a), p,=arg(l—zx) .

These Majorana phases will not be relevant for neu-

trino oscillations, but they will appear in neutrinoless

double beta deacy and in leptogenesis. The MNS ma-
tricx is given by Uyns = U U which has the form
given in Eq. (4).

These conclusions can also be arrived at by ana-
lyzing the neutrino mass matrix in the flavor basis,
i.e., in a basis where the charged lepton mass matrix

is diagonal:

3+2r—2* —x—2° —z-2?
m,
Mjavor: ?0 —r—x? 2z —x? 3—x—x?
—z—2*> 3—xz—2* 2x—2°
(13)

The expressions for the light neutrino masses can

be inverted to obtain

s — (3 —mi)m

2v2myma[m3m3 +m3m3 — 2mim3)t/2’
- 1
ﬁmlmQ

Constraints on neutrino masses. There are restric-

(14)

|| [mim3 +m3mg —2mim3]'/2.

tions arising from the conditions that |x| be real and

|cos| <1 for a given value of r=Am2 /A2 = with

m

1+H14 /(1 +7)2 +4(Jz? +[=[*) (1 —r)?
4|z|(r—1)

cosy = . (15)
Both normal (the “+” soluand inverted, the “—” so-
lution) neutrino mass hierarchies are allowed.

The normal hierarchy case occurs for x around-
1. The condition |cosy < 1 can be satisfied only if
my/my & 1/2 whichleads to m,; &~ 1/2 which leads to
my ~ (Am2 /3)'/2. One also has ms~ |Am2, |'/2.

In the inverted hierarchy case, the situation is dif-

ferent. Here m; and m, are nearly equal, and mj is

2
atm

smaller than m;. In order to satisfy Am? < Am

it is necessary that cost¢ ~ |z|/2. The value of ms

atm]
atm

is not determined by oscillation data. m3 > |Am
(or equivalently, |z| < 1), we have three-fold degener-
acy of masses and mgp ~ms. This case also coincides
with the leading results of Ref. [9].

The results for various effective masses, mgp for
neutrinoless double 3 decay, m._ = (Zl |Ues|*m?)/?
for tritium  decay, and Zmz for the sum of the
three light neutrino masses, f;nd the mass ratios are
plotted in Figs. 1(a)—(c) and 2(a)—(c) as functions

of |z].
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—0.97 ) 6 e ~ Y2In(Mgur/Mgw)/327. One obtains to order
> 098 £ o €,
S —099 [ £2r .
oo . O U] ~ lex|||z| 4+ cosy +isiny| ‘ (17)
08 09 1.0 1.1 12 08 09 1.0 1.1 12 3v/2| cost(|z| +2cos )|
0.100 ————————— 0.07 F
5 0050 F oy T = 0.06 - (@ One obtains the induced |U,s| for the normal and in-
% 0.020 = i . . . . .
£ 0.010 3 ,/ D 005 verted hierarchies by inserting the corresponding ex-
g = y g p g
0.005 0.04 1
R — pressions for cost) and |z| given earlier.
0.8 09 1.0 1.1 0.8 09 1.0 1.1 12
x| N The results are shown in Figs. 1(d) (normal mass
Fig. 1. Various quantities as functions of |z| for ordering) and in 2(d) (inverted ordering) where we

normal mass hierarchy case. (a) cosy vs. |zf;
(b) m1/m2 (dashed) and mg/mao (solid) vs.
|z]; (¢) mee (solid (1)), m~, (dotted (2)), mo
(dashed (3)) and > m,; (dot-dashed (4)) (in
eV unit) vs. |z|; (d) RG running correction to
|Ues/e€| vs. |z|.

L (a)

mass/eV

x|

Fig. 2.
inverted mass hierarchy case. (a) cos® vs. |zf;
(b) m1/m2 (dashed) and ms/m2 (solid) vs.
|]; (¢) mee (solid (1)), m~, ~ms (dashed (2))
and > m; (dot-dashed (3)) (in eV unit) vs.
|z|; (d) RG running correction to |Ues/€| vs.

Various quantities as functions of |z| for

|z

Stability of U,s. A distinctive feature of the geo-
metric mixing pattern is that U.,; =0 at the scale of
A, symmetry breaking, which we have taken to be of
order the GUT scale. When running from this high
scale to low energy scale (Mgw), the mixing matrix
may change, in particular U.; may not be zero any
more. One should ensure that the pattern of Eq. (4)
is not destabilized, which can happen if the induced
U.s is too large. We demonstrate this stability now.
The leading flavor-dependent effect of the running
from high scale to low scale is given by the one-loop
RGE™?
dmy 1
dlnt  32m2
This leads to correction, to the leading order,
to the entries Miz23(1 —€) and Ma3(1 — 2¢) with

MYVt (YY) "M+ (16)

plot |U.s/e| as a function of |z|. We see that the
induced |Ues| is small, too small to be measured by
near future experiments for the normal mass hierar-
chy case in the whole allowed |z| range. For the in-
verted mass hierarchy case for |x| larger than about
0.2, |U.3| remains small. For smaller values of |z,
with € of order one (corresponding to Y; = 1), |U.s|
can be as large as 0.1 which may be measured in the
future. In this case, all three neutrinos are nearly
degenerate and the cosmological mass limit on neu-
trinos will be nearly saturated. We conclude that the
structure of the mixing matrix derived is not upset
by radiative corrections.

Leptogenesis. Leptogenesis occurs in a simple way
in this model via the decay of the right-handed

(14]

neutrinos The heavy Majorana mass matrix of

V¢ is given in the model as (see Eq. (8))

1 0 —x
Mye=Mg| 0 1 0 |. (18)
—x 0

The Dirac neutrino Yukawa coupling matrix is pro-
portional to an identity matrix at the scale of A, sym-
metry breaking which we take to be near the GUT
scale. The v¢ fields will remain light below that scale,
down to the scale Mg. Renormalization group ef-
fects in the momentum range My < p < Mgyt will
induce non-universal corrections to the Dirac neu-
trino Yukawa coupling matrix. Without such non-
universality no lepton asymmetry will be induced in
The effective
theory in this momentum range is the MSSM with
the v fields.
From the renormalization group equation

av, 1

the decay of right-handed neutrinos.
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where W = eY,LH4 + v°Y,LH, + ---, we obtain at
the scale Mg, Y, = Y? x diag(1,1,1 —§) with § ~
(Y2/167%) In(Mgur/Mg). Y2 is the value of the uni-
versal Dirac Yukawa coupling at the GUT scale.

We diagonalize M., by the rotation v* = OQN,

where

0=

1 0 1
0 2 0],Q=dia e*i¢1/2, 1, e i92/2
7 V2 ’ Q = diag{ }

0
(20)
so that the N fields are the mass eigenstates with real
and positive mass eigenvalues: My = My x diag(|1+
x|, 1,1 —=xl).
In the basis where the heavy v¢ fields have been di-
agonalized, the Dirac neutrino Yukawa coupling ma-
trix takes the form Y, = QOTY,, so that

VLY = |Y2°|2
1+(1-6)? 0 —e" " {(1-6)2—1}
0 2 0
—e T (1-6)2—1} 0 +(1-5)?

(21)
The CP asymmetry arising from the decay of the
field N; is given by

€= Zlm{

where

s (3e) @

f(y)=\/z7<y2+10g1+y> : (23)
Asy>1, f(y) —3/\/y.

In the normal hierarchy case, m,/ms = M, /Ms,
so the lightest N field is V;. In this case we have
—3[Y2?

%62 (mi) sin(¢py — ¢y ) =~

VP o (ma ) [ (2ma/ma—1)? 1z
87[ m3 (ml/m3)2

€1 =

(24)

To see the numerical value of €;, we note that |Y?|

can be of order one, § ~ (0.1Y?2), and m,/m;z ~
[ solar/SAm tm ]1/2 = 01
tan3, Y. ~1, and we find ¢; ~10~%. Even for moder-

ate values of tan 3 ~ 20, we find that ¢; ~ 1076

For very large value of

is pos-
sible. The negative sign will also ensure the correct
sign of baryon asymmetry. The induced lepton asym-
metry is converted to baryon asymmetry through
electroweak sphaleron processes. The baryon asym-
metry is given by Yz ~ —Y},/2, where Y, = ke, /g*,
where g* ~ 200 is the effective number of degrees of
freedom in equilibrium during leptogenesis, and x is
the efficiency factor obtained by solving the Boltz-
man’s equations. A simple approximate formula for

K is?!

0.01 1"
~ 1072 25
" |:T7116V:| ’ (25)
where
. V2 oA
my, = ﬁul [YVYVT]ll . (26)

For § ~ 0.1 and M, ~ 10"GeV, we obtain Yy ~
7x 107! in good agreement with observations.
For the case of inverted mass hierarchy, Nj is

lighter than N;, so we focus on €3. It is given by

T dn my) 142z

Again we see that reasonable lepton asymmetry is
generated.

In summary, we have presented a class of renor-
malizable gauge models based on the non-Abelian
discrete symmetry A, which realize the geometric
neutrino mixing pattern of Eq. (4) naturally. The
resulting constraints on the neutrino masses have
been outlined. We have also highlighted an intrigu-
ing connection between high scale leptogenesis and

low energy neutrino experiments.

I thank Babu for collaboration on the results re-
ported in this talk. This work is supported in part by
a grant from NSC.
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