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Abstract I report results obtained recently in collaboration with on neutrino mixing (hep-ph/0507217).

Current neutrino oscillation data are consistent with the neutrino mixing angles taking values sin2 θ12 = 1/3,

sin2 θ23 = 1/2, and sin2 θ13 = 0. We present a class of renormalizable gauge models which realize such a

geometric mixing pattern naturally. These models, which are based on the non–Abelian discrete symmetry

A4, place significant restrictions on the neutrino mass spectrum. It is shown that baryogenesis via leptogenesis

occurs quite naturally, with a single phase (determined from neutrino oscillation data) appearing in leptonic

asymmetry and in neutrinoless double beta decay.
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Our understanding of the fundamental properties

of neutrinos has improved dramatically over the last

few years. Atmospheric and solar neutrino experi-

ments have by now firmly established occurrences of

neutrino flavor oscillations[1]. Combining all positive

results[2, 3], one obtains the following neutrino mass

and mixing pattern (with 2σ error bars)[3]:

∆m2
¯ = m2

2−m2
1 =7.92×10−5(1±0.09)eV2, (1)

∆m2
atm = m2

3−m2
2 =±2.4×10−3(1+0.21

−0.61)eV
2, (2)

sin2 θ12 = 0.314(1+0.18
−0.15), sin2 θ23 =0.44(1+0.41

−0.22),

sin2 θ13 = 0.9+0.23
−0.9 ×10−2 . (3)

Here mi are the (positive) neutrino mass eigenvalues,

and θij are the neutrino mixing angles. m2
2−m2

1 > 0

in Eq. (1) is necessary for MSW resonance to occur

inside the Sun. The sign of ∆m2
atm, which is physical,

is currently unknown.

A remarkable feature of the oscillation data is that

they are all consistent with a “geometric” neutrino

mixing pattern with the neutrino mixing matrix (the

MNS matrix) given by[4—7]

UMNS =




√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2




P . (4)

Here P is a diagonal phase matrix.

In fact, these geometric mixing angles are very

close to the central values of Eq. (3). We observe

that unlike the quark mixing angles, which are re-

lated to the quark mass ratios in many models (eg:

θc ≈
√

md/ms), the neutrino mixing angles seem to

be unrelated to the neutrino mass ratios. The pur-

pose of this work is toprovide a deriation of such a

geometric neutrino mixing based on renormalizable

gauge theories.

Our derivation of Eq. (4) will be based on the non–

Abelian discrete symmetry A4, the symmetry group

of a regular tetrahedron. This symmetry group has

found application in obtaining maximal atmospheric

neutrino mixing[8] and in realizing quasi–degenerate
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neutrino mass spectrum[9]. No successful derivation

of Eq. (4) has been achieved to our knowledge (based

on A4 or other symmetries) in a renormalizable gauge

theory context. For attempts along this line see

Refs. [4, 10, 11]. In Refs. [4, 6], Eq. (4) was sug-

gested as a phenomenological ansatz. In Ref. [10], a

higher dimensional set up is used to motivate Eq. (4).

Ref. [11] analyzes special cases of an A4 derived neu-

trino mass matrix towards obtaining the structure of

Eq. (4). A large number of models in the literature

have derived maximal atmospheric mixing based on

non-Abelian symmetries[12], but in most models the

solar mixing angle is either maximal (now excluded

by data) or is a free parameter.

The Model. We work in the context of low en-

ergy supersymmmetry, which is motivated by a solu-

tion to the gauge hierarchy problem as well as by the

observed unification of gauge couplings. The gauge

group of our model is that of the Standard Model,

SU(3)C×SU(2)L×U(1)Y. We augment this symme-

try with a non-Abelian discrete symmetry A4. This

order 12 group is the symmetry group of a regular

tetrahedron. A4 has a unique feature in describing the

lepton sector: It has one triplet and three inequiva-

lent singlet representations, thus allowing for assign-

ing the left-handed lepton fields to the triplet and

the right-handed charged lepton fields to the three

inequivalent singlets. In addition to the A4 symme-

try, we assume a Z4 × Z3 discrete symmetry. The

Z4 is an R-symmetry under which the superpotential

carries 2 units of charge. The Z4 and Z3 symmetries

are broken softly in the superpotential via the lowest

dimensional operators.

The lepton and Higgs fields transform under A4×
Z4×Z3 as follows.

L : (3,1,0), ec : (1+1′+1′′,3,0), νc : (3,0,1),

E : (3,1,0), Ec : (3,1,0),

Hu : (1,1,2), Hd : (1,0,0),

χ : (3,2,0), χ′ : (3,2,1), S1,2 : (1,2,1).

(5)

Here in the fermion sector we have introduced new

vector-like iso-singlet fields E and Ec transforming

under the SM gauge group as (1,1,−1) and (1,1,1),

respectively, which will acquire large masses and

decouple. Hu and Hd are the usual Higgs fields

of MSSM, while χ,χ′,S1,2 are all SM singlet fields

needed for achieving symmetry breaking. The quark

fields (Q,uc,dc) are all singlets of A4 with Z4 ×Z3

charges of Q(1,1);uc(0,0) and dc(1,2), so that the

usual quark Yukawa couplings QdcHd + QucHu are

allowed in the superpotential.

The superpotential terms relevant for lepton

masses and Higgs superpotential are given by

WYuk =MEEiE
c
i +feLiE

c
i Hd +he

ijkEie
c
jχk+

1
2
fSlν

c
i ν

c
i Sl +

1
2
fijkν

c
i ν

c
j χ

′
k +fνLiν

c
i Hu,

WHigs =λχχ1χ2χ3 +λχ′s(χ′21 +χ′22 +χ′23 )S1+ (6)

λ′χ′χ
′
1χ
′
2χ
′
3 +λs11S

3
1 +λs12S

2
1S2 +λs21S1S

2
2+

λs22S
3
2 +µ2

1S1 +µ2
2S2 +µχ(χ2

1 +χ2
2 +χ2

3).

Here χ = (χ1,χ2,χ3), and χ′ = (χ′1,χ
′
2,χ

′
3). The µ2

1,2

terms are the lowest dimensional terms that break the

Z3 symmetry softly, while leaving Z4 unbroken. The

µχ term is the lowest dimensional term that breaks

the Z4 symmetry softly. Such soft breaking can be

understood as spontaneous breaking occurring at a

higher scale. We have chosen without loss of gener-

ality the combination of S1 and S2 that couples to χ′

as simply S1 in Eq. (6).

Minimizing the potential derived from Eq. (6) in

the supersymmetric limit, we obtain the following

vacuum structure:

〈S2〉= vs, 〈S1〉=0; 〈χ1〉= 〈χ2〉= 〈χ3〉= vχ;

〈χ′2〉= vχ′ , 〈χ′1〉=0; 〈χ′3〉=0.
(7)

with vχ = −2µχ/λχ, v2
s = −µ2

2/(3λs22), and v2
χ′ =

(λs21µ
2
2−3λs22µ

2
1)/(3λs22λχ′s). Electroweak symmetry

breaking is achieved in the usual way by 〈Hu〉 = vu,

〈Hd〉 = vd. We emphasize that vanishing of certain

VEVs is a stable result, owing to the discrete sym-

metries present in the model. This is important for

deriving the MNS matrix of Eq. (4). We observe that

there are no pseudo-Goldstone modes, as can be seen

by directly computing the masses of the Higsinos from

Eq. (6).

The mass matrices MeE for the charged lep-

tons and Mννc for the neutral leptons resulting from

Eqs. (6) and (7) are given by (in the notation L =
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(e,E)MeE (ec,Ec)T)

MeE =




0 0 0 fevd 0 0

0 0 0 0 fevd 0

0 0 0 0 0 fevd

he
1vχ he

2vχ he
3vχ ME 0 0

he
1vχ he

2ωvχ he
3ω

2vχ 0 ME 0

he
1vχ he

2ω
2vχ he

3ωvχ 0 0 ME




,

Mννc =




0 0 0 fνvu 0 0

0 0 0 0 fνvu 0

0 0 0 0 0 fνvu

fνvu 0 0 fs2vs 0 fχ′vχ′

0 fνvu 0 0 fs2vs 0

0 0 fνvu fχ′vχ′ 0 fs2vs




.

(8)

Since the E and the Ec fields acquire large masses,

of order the GUT scale, they can be readily integrated

out. The reduced 3× 3 mass matrices for the light

charged leptons is given by

Me =UL




me 0 0

0 mµ 0

0 0 mτ


 , UL =

1√
3




1 1 1

1 ω ω2

1 ω2 ω


 , (9)

where mi =
√

3(fevdvχ/ME)he
i (1+(hivχ)2)/M2

E)−1/2.

The light neutrino mass matrix is found to be

M light
ν =m0




1 0 x

0 1−x2 0

x 0 1


 , (10)

where m0 = f2
νv2

ufs2vs/(f2
s2

v2
s − f2

χ′v
2
χ′), and x =

−fχ′vχ′/(fs2vs). We define x= |x|eiψ.

M light
ν can be diagonalized by the transformation

M light
ν =U∗

νDνU †
ν with

Uν =
1√
2




1 0 −1

0
√

2 0

1 0 1


P ∗;

Dν =m0



|1+x|

|1−x2|
|1−x|


 .

(11)

P ∗ is a diagonal phase matrix given by

P ∗ = diag{e−iφ1/2, e−i(φ1+φ2)/2, e−i(φ2+π)/2},

φ1 = arg(1+x), φ2 =arg(1−x) .
(12)

These Majorana phases will not be relevant for neu-

trino oscillations, but they will appear in neutrinoless

double beta deacy and in leptogenesis. The MNS ma-

tricx is given by UMNS = UT
L U∗

ν which has the form

given in Eq. (4).

These conclusions can also be arrived at by ana-

lyzing the neutrino mass matrix in the flavor basis,

i.e., in a basis where the charged lepton mass matrix

is diagonal:

Mflavor
ν =

m0

3




3+2x−x2 −x−x2 −x−x2

−x−x2 2x−x2 3−x−x2

−x−x2 3−x−x2 2x−x2


 .

(13)

The expressions for the light neutrino masses can

be inverted to obtain

cosψ =
−(m2

3−m2
1)m

2
2

2
√

2m1m2[m2
1m

2
2 +m2

2m
2
3−2m2

1m
2
3]1/2

,

|x|= 1√
2m1m2

[m2
1m

2
2 +m2

2m
2
3−2m2

1m
2
3]

1/2.

(14)

Constraints on neutrino masses. There are restric-

tions arising from the conditions that |x| be real and

|cosψ|6 1 for a given value of r =∆m2
¯/∆2

atm with

cosψ =
1+1±

√
(1+r)2 +4(|x|2 + |x|4)(1−r)2

4|x|(r−1)
. (15)

Both normal (the “+” soluand inverted, the “−” so-

lution) neutrino mass hierarchies are allowed.

The normal hierarchy case occurs for x around-

1. The condition |cosψ 6 1 can be satisfied only if

m1/m2 ≈ 1/2 whichleads to m1 ≈ 1/2 which leads to

m1≈ (∆m2
¯/3)1/2. One also has m3≈ |∆m2

atm|1/2.

In the inverted hierarchy case, the situation is dif-

ferent. Here m1 and m2 are nearly equal, and m3 is

smaller than m1. In order to satisfy ∆m2
¯¿∆m2

atm

it is necessary that cosψ ≈ |x|/2. The value of m3

is not determined by oscillation data. m2
3À|∆m2

atm|
(or equivalently, |x|¿ 1), we have three-fold degener-

acy of masses and mββ≈m3. This case also coincides

with the leading results of Ref. [9].

The results for various effective masses, mββ for

neutrinoless double β decay, mνe = (
∑

i
|Uei|2m2

i )
1/2

for tritium β decay, and
∑

i
mi for the sum of the

three light neutrino masses, and the mass ratios are

plotted in Figs. 1(a)—(c) and 2(a)—(c) as functions

of |x|.
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Fig. 1. Various quantities as functions of |x| for

normal mass hierarchy case. (a) cosψ vs. |x|;
(b) m1/m2 (dashed) and m3/m2 (solid) vs.

|x|; (c) mee (solid (1)), mνe (dotted (2)), m2

(dashed (3)) and
∑

mi (dot-dashed (4)) (in

eV unit) vs. |x|; (d) RG running correction to

|Ue3/ε| vs. |x|.

Fig. 2. Various quantities as functions of |x| for

inverted mass hierarchy case. (a) cosψ vs. |x|;
(b) m1/m2 (dashed) and m3/m2 (solid) vs.

|x|; (c) mee (solid (1)), mνe 'm2 (dashed (2))

and
∑

mi (dot-dashed (3)) (in eV unit) vs.

|x|; (d) RG running correction to |Ue3/ε| vs.

|x|.

Stability of Ue3. A distinctive feature of the geo-

metric mixing pattern is that Ue3 = 0 at the scale of

A4 symmetry breaking, which we have taken to be of

order the GUT scale. When running from this high

scale to low energy scale (MEW), the mixing matrix

may change, in particular Ue3 may not be zero any

more. One should ensure that the pattern of Eq. (4)

is not destabilized, which can happen if the induced

Ue3 is too large. We demonstrate this stability now.

The leading flavor-dependent effect of the running

from high scale to low scale is given by the one-loop

RGE[13]

dM e
ν

dln t
=

1
32π2

[M e
νY †

e Ye +(Y †
e Ye)TM e

ν]+ · · · (16)

This leads to correction, to the leading order,

to the entries M13,23(1 − ε) and M33(1 − 2ε) with

ε ' Y 2
τ ln(MGUT/MEW)/32π2. One obtains to order

ε,

|Ue3| ≈ |εx| ||x|+cosψ+isinψ|
3
√

2|cosψ(|x|+2cosψ)| . (17)

One obtains the induced |Ue3| for the normal and in-

verted hierarchies by inserting the corresponding ex-

pressions for cosψ and |x| given earlier.

The results are shown in Figs. 1(d) (normal mass

ordering) and in 2(d) (inverted ordering) where we

plot |Ue3/ε| as a function of |x|. We see that the

induced |Ue3| is small, too small to be measured by

near future experiments for the normal mass hierar-

chy case in the whole allowed |x| range. For the in-

verted mass hierarchy case for |x| larger than about

0.2, |Ue3| remains small. For smaller values of |x|,
with ε of order one (corresponding to Yτ ≈ 1), |Ue3|
can be as large as 0.1 which may be measured in the

future. In this case, all three neutrinos are nearly

degenerate and the cosmological mass limit on neu-

trinos will be nearly saturated. We conclude that the

structure of the mixing matrix derived is not upset

by radiative corrections.

Leptogenesis. Leptogenesis occurs in a simple way

in this model via the decay of the right-handed

neutrinos[14]. The heavy Majorana mass matrix of

νc is given in the model as (see Eq. (8))

Mνc =MR




1 0 −x

0 1 0

−x 0 1


 . (18)

The Dirac neutrino Yukawa coupling matrix is pro-

portional to an identity matrix at the scale of A4 sym-

metry breaking which we take to be near the GUT

scale. The νc fields will remain light below that scale,

down to the scale MR. Renormalization group ef-

fects in the momentum range MR < µ < MGUT will

induce non-universal corrections to the Dirac neu-

trino Yukawa coupling matrix. Without such non-

universality no lepton asymmetry will be induced in

the decay of right-handed neutrinos. The effective

theory in this momentum range is the MSSM with

the νc fields.

From the renormalization group equation

dYν

dt
=

1
16π2

Yν(Y †
l Yl)+ · · · (19)
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where W = eYlLHd + νcYνLHu + · · · , we obtain at

the scale MR, Yν = Y 0
ν × diag(1,1,1− δ) with δ '

(Y 2
τ /16π2) ln(MGUT/MR). Y 0

ν is the value of the uni-

versal Dirac Yukawa coupling at the GUT scale.

We diagonalize Mνc by the rotation νc = OQN ,

where

O=
1√
2




1 0 1

0
√

2 0

−1 0 1


 ,Q=diag{e−iφ1/2, 1, e−iφ2/2}

(20)

so that the N fields are the mass eigenstates with real

and positive mass eigenvalues: MN = MR×diag(|1+

x|,1, |1−x|).
In the basis where the heavy νc fields have been di-

agonalized, the Dirac neutrino Yukawa coupling ma-

trix takes the form Ŷν =QOTYν, so that

ŶνŶ †
ν =

|Y 0
ν |2
2


1+(1−δ)2 0 −e

i(φ2−φ1)
2 {(1−δ)2−1}

0 2 0

−e
i(φ1−φ2)

2 {(1−δ)2−1} 0 1+(1−δ)2


.

(21)

The CP asymmetry arising from the decay of the

field Ni is given by

εi =
−1
8π

1
[ŶνŶ †

ν ]ii

∑
j

Im{[ŶνŶ †
ν ]2ij}f

(
M2

j

M2
i

)
, (22)

where

f(y)=
√

y

(
2

y−1
+log

1+y

y

)
. (23)

As yÀ 1, f(y)→ 3/
√

y.

In the normal hierarchy case, m1/m3 = M1/M3,

so the lightest N field is N1. In this case we have

ε1 =
−3|Y 0

ν |2
8π

δ2

(
m1

m3

)
sin(φ2−φ1)'

±3|Y 0
ν |2

8π
δ2

(
m1

m3

)[
1− (2m1/m2−1)2

(m1/m3)2

]1/2

.

(24)

To see the numerical value of ε1, we note that |Y 0
ν |

can be of order one, δ ' (0.1Y 2
τ ), and m1/m3 '

[∆m2
solar/3∆m2

atm]1/2 ' 0.1. For very large value of

tanβ, Yτ' 1, and we find ε1' 10−4. Even for moder-

ate values of tanβ∼ 20, we find that ε1' 10−6 is pos-

sible. The negative sign will also ensure the correct

sign of baryon asymmetry. The induced lepton asym-

metry is converted to baryon asymmetry through

electroweak sphaleron processes. The baryon asym-

metry is given by YB ' −YL/2, where YL = κε1/g∗,

where g∗ ∼ 200 is the effective number of degrees of

freedom in equilibrium during leptogenesis, and κ is

the efficiency factor obtained by solving the Boltz-

man’s equations. A simple approximate formula for

κ is[15]

κ' 10−2

[
0.01

m̃1eV

]1.1

, (25)

where

m̃1 =
v2
u

M1

[ŶνŶ †
ν ]11 . (26)

For δ ∼ 0.1 and M1 ∼ 1014GeV, we obtain YB ∼
7×10−11, in good agreement with observations.

For the case of inverted mass hierarchy, N3 is

lighter than N1, so we focus on ε3. It is given by

ε3' ∓3|Y 0
ν |2

4π
δ2

(
m3

m1

) |x|
√

1−|x|2/4√
1+2|x|2 . (27)

Again we see that reasonable lepton asymmetry is

generated.

In summary, we have presented a class of renor-

malizable gauge models based on the non-Abelian

discrete symmetry A4 which realize the geometric

neutrino mixing pattern of Eq. (4) naturally. The

resulting constraints on the neutrino masses have

been outlined. We have also highlighted an intrigu-

ing connection between high scale leptogenesis and

low energy neutrino experiments.

I thank Babu for collaboration on the results re-

ported in this talk. This work is supported in part by

a grant from NSC.



第 12期 何小刚：中微子几何混合模型与轻子和重子数产生 1205

References

1 Ahmad Q R et al(SNO Collaboration). Phys. Rev. Lett.,

2002, 89: 011301; Phys. Rev. Lett., 2002, 89: 011302;

Fukuda S et al(Super-Kamiokande Collaboration). Phys.

Lett., 2002, B539: 179; Cleveland B T et al. Astro-

phys., 1998, J496: 505; Davis R. Prog. Part. Nucl. Nucl.

Phys., 1994, 32: 13; Abdurashitov D N et al(SAGE Col-

laboration). Phys. Rev., 1999, D60: 055801; Hampel W

et al(GALLEX Collaboration). Phys. Let., 1999, B447:

127; Cattadori C(GNO Collaboration). Nucl. Phys., 2002,

B111(Proc. Suppl.): 311

2 Maltoni M, Schwetz T, Tortola M A et al. New J. Phys.,

2004, 6: 122; Goswami S, Smirnov A Y. arXiv:hep-

ph/0411359; Goswami S, Bandyopadhyay A, Choubey S.

Nucl. Phys. Proc.,2005, 143(Suppl.): 121; Gonzalez-Garcia

M C. arXiv:hep-ph/0410030; Back H et al. arXiv:hep-

ex/0412016

3 Fogli G et al. hep-ph/0506083

4 Harrison P F, Perkins D H, Scott W G. Phys. Lett., 1999,

B458: 79; Phys. Lett., 2002, B530: 167

5 XING Z Z. Phys. Lett., 2002, B533: 85

6 HE X G, Zee A. Phys. Lett., 2003, B560: 87; Phys. Rev.,

2003, D68: 037302

7 Wolfenstein L. Phys. Rev., 1978, D18: 958

8 MA E, Rajasekaran G. Phys. Rev., 2001, D64: 113012

9 Babu K S, MA E, Valle J W. Phys. Lett., 2003, B552: 207

10 Altarelli G, Feruglio F. hep-ph/0504165

11 MA E. hep-ph/0505209

12 Grimus W, Joshipura A S, Kaneko S et al. JHEP, 2004,

0407: 078; Grimus W, Lavoura L. arXiv:hep-ph/0504153;

Babu K S, Kubo J. Phys. Rev., 2005, D71: 056006; Seidl

G. arXiv:hep-ph/0301044; Mohapatra R N. JHEP, 2004,

0410: 027; Babu K S, Barr S M. Phys. Lett., 2002, B525:

289

13 Babu K S, Leung C N, Pantaleone J T. Phys. Lett., 1993,

B319: 191; Chankowski P H, Pluciennik Z. Phys. Lett.,

1993, B316: 312

14 Fukugita M, Yanagida T. Phys. Lett., 1986, B174: 45

15 Buchmuller W, Bari P D, Plumacher M. Nucl. Phys., 2002,

B643: 367; Giudice G F, Notari A, Raidal M et al. Nucl.

Phys., 2004, B685: 89

中微子几何混合模型与轻子和重子数产生

何小刚
1)

(南开大学物理学院 天津 300071)

(台湾大学物理系 台北)

摘要 在这一报告中将报告我和BABU教授合作的在hep-ph/0507217一文中有关中微子混合研究结果. 目前中

微子实验数据所决定的混合角可归结为几何混合状况: sin2 θ12=1/3, sin2 θ23=1/2, 和 sin2 θ13=0. 我们在这一工

作中建立了能实现这一几何混合的可重整化模型. 模型以非阿贝尔非连续群 A4 为描述中微子不同代混合的对

称性. 这类模型对中微子质量有很强的限制. 而且能很自然地由轻子数破坏产生重子不对称的实验观测值. 很有

趣的是这类模型中出现在轻子不守恒和无中微子双beta衰变中的相位是一样的.
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