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Properties of the Gluon Recombination Functions ™
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Abstract The gluon recombination functions in the twist-4 QCD evolution equations are studied at the leading logarithmic approxi-

mation using both the covariant and noncovariant methods. We point out that the gluon recombination functions in the GLR-MQ evolu-

tion equation are unavailable . The methods avoiding the IR divergences are discussed, which can be used in the derivations of the evo-

lution kernels and coefficient functions at higher twist level.
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1 Introduction

The QCD evolution equations in the leading order level
predict strong rise of parton densities when the Bjorken vari-
able x, = 0*/2p. q decreases toward small values. This be-
havior violates unitarity. Therefore, various models are pro-
posed to modify the twist-2 evolution kemels (i.e., the par-
ton splitting functions) . Gribov, Levin and Ryskinil] first
suggest a non-linear evolution equation, in which the evolu-
tion kernels (we call them the gluon recombination functions)
are constructed by the fan diagrams. Later Mueller and Qiu:21
calculate the (real) gluon recombination functions at the dou-
ble leading logarithmic approximation (DLLA) in a covariant
perturbation framework. The GLR-MQ equation is broadly re-
garded as a key link from perturbation region to non-perturba-
tion region. This equation was generalized to include the con-
tributions from much higher order corrections in the Glauber-
Mueller formula-*’ . Following them, a similar evolution equa-
tion (we call it the modified DGLAP equation) is derived in a
broader kinematic region ( the leading logarithmic ( Q?) ap-
proximation-LLA( Q%)) in Ref.[4]. Different from the GLR-
MQ equation, the gluon recombination functions in this equa-
tion are calculated and summed in the { old-fashioned) time-
ordered perturbation theory (TOPT) .

In this paper we present the different resulis of the gluon
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recombination functions in the above-mentioned two evolution
equations. The QCD evolution kernels are separated from the
coefficient functions either in a covariant perturbation theory
or in a parton model using TOPT. I is well known that these
two approaches are completely equivalent. However, we find
that the infrared (IR) singularities in the twist-4 Feynman di-
agrams impede us to safely extract the evolution kernels before
these singularities are cancelled. This result leads to the fact
that the gluon recombination functions in the GLR-MQ evolu-
tion equation are unavailable. For illustrating our idea in de-
tail, in Sec. 2 we compare two approaches in the derivations
of a splinting function in the twist-2 DGLAP equationi5 J Then
we show two different derivations of the twist-4 recombination
functions in Sec.3. In Sec. 4 we analyze the IR singularities
in the recombination functions, which raise the questions in
the derivations of the gluon recombination functions in the co-
variant theory. The discussions and conclusions are given in

Sec. 5.
2 Twist-2 splitting functions

In this work we take the physical axial gauge and let the
light-like vector n fix the gauge as n. A =0, A being the
1
V2

gluon field, where n* =

(1,0,, -1) and nﬂziz(],
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0, , 1).A natural derivation of the splitting function is given
by TOPT in a special infinite momentum frame, i.e., the
Bjorken frame, where the virtual photon has almost zero ener-
gy and zero longitudinal momentum. A Feynman propagator is
decomposed into the forward and backward propagators in
TOPT, where the propagating partons stay on-shell, respec-
tively. One can find that the contributions of the backward
components of the propagators in the cut diagram, for exam-
ple in Fig.1(a) are suppressed:” . Thus, the splitting func-
tion can be isolated in the equivalent particle approximation-%’

as shown in Fig.l(b) .

P
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Fig.1.  Graphical illustration of the isolation of a splitting

function in the TOPT cut diagram. £ is on-shell momentum

and the dashed lines refer to the time order.

The contributions of Fig. 1(a) to the twist-2 coefficient

functions are
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twist-2 2 s 2
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where we used
Ty, by krs kv k] =
Tl y, kv k 1Tl v by K 1, (2)

since the momentum % is on-shell. Now we can separately de-

fine a splitting function Py %(Fig.1(b))as

Ay dkzl q >
Zr ?Pmm =
1 1 2 — 2 d3k2
M(q— , (3
8EE,, Ei + Ey - Ep] | Mq=>a) | (2x)3 )
i.e.,
4(1+ 2
P = 5 (155)- (4)

The same splitting function can be obtained in a covari-

ant framework-" . The related dominant Fynmann diagram for

the coefficient function at the LLA ( Q?) is shown in Fig.2.
For convenience, we take a collinear {infinite momentum )
{frame, in which the momenta of the initial parton and virtual

photon are parameterized as

P = (pz’o’pz) =p,n,
and

O (s

q=9q.n+ q_ nz—xnp+n+2x"p+n.

Fig.2.
for the twist-2 coefficient function at the LLA;

(a)A dominate covariant Feynman diagram

(b)the bare virtual photon-quark vertex.

The contributions of the q—»qg process in Fig.2 to the

coefficient function are

Cet =
2 2
Saf gk o =By g sy,

(6)

where
M(y q»“/ q) =& <§>cnlnurzTr[yyy ° klyuy °

kygy = proy « k1lp(ko)dt . (7)

I3 is an axial gauge gluon polarization
kn, + kn,
r,(k) a7 — (8)
In the calculations we use the Sudakov variables
k, = bp, + cq;, + k. (9)
The result in the leading logarithmic region, where &?
< Q%is
2 2
twisl-2 Y2 &J dk_L i 1 + Xp
Cls? — ZL,C,. 2 B 3 T-x (10)

The splitting function Fq. (4) can be directly obtained

through dividing the coefficient function Ci%s? by the contri-

butions of a bare photon-quark vertex (see Fig.2(b)),that is

e COW 4147
Pl = ggﬂ = ? 1_zz’ (11)

in which we have taken the assumption that
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Pe>> q_, (12) terized as

thus, one can define p1 = [%p,0,0,%,p],py = [%,p,0,0,2,p],
k = xP._. (13 N 2

” N ) k= [x3p+2 k| x3p],
It is not surprising for the two approaches to have the *3p
above equivalence. In fact, the contributions of the backward _ K
kz = [x4p + 2x4py - kL7x4p:|7

components in two off-shell Feynman propagators in Fig.2 are
suppressed under the conditions Eq. (12) and LLA ( 0?),al-
though straightforward computations in covariant theory do not
display this fact. To confirm this conclusion, we recalculate
Eq. (10) but by removing the backward components in two
Feynman propagators with the momentum % in Fig.2. We get
the same result as Eq. (11).

3 Twist-4 recombination functions

The simplest way of the derivation of the recombination
functions is TOPT, which was developed in Ref. [4].1In this
method the recombination function is isolated from the twist-4
coefficient function using the equivalent approximation as

shown in Fig.3 and it is generally written as

dk? 1 X3 X
2 ( ) un | b 344
2R g Bk S
= kY T 162 (2, + xy)° %
di?
| My, v, %duxs TAL’ (14)
' 1

Fig.3. Craphical illustration of the isolation of a recombination
function in the TOPT cut diagram. The dashed line is an effective

“current” probing the gluonic matrix.

where 13 = p2 + p? and we use a current (the dashed lines)

Z Fi Fﬁw to probe the gluonic current!”’ .

The momenta of the initial and final partons are parame-

2

ky = [(x4—x2)p+ kl,(x4—x2)P],

2xp
2

k
ky = [(x4— xz)p +ﬁ, - kL,(x4— xz)p].

(15)
For example, the recombination function for GG—>G at

t-channel is

((‘}( X3Xyg ' ’
IOI’I < >w]or )3 CaApCﬁWC ‘Ao’ Cﬁ’r/’a'dﬁ dai X

Fzg( ks) Iye ( l4) i L s ky k3
212 " - = 2 8" - 2
ks ks | k| | ky |
(16)
where [, m,r,s are the space indices of a, 7,a’, 7 of ks
and £, , respectively; C,, and Gy, are the triple gluon vertex.
A set of recombination functions, where the contributions

from all channels are summed up, is listed in Table 1.

Table 1.

1 2y - x)*(184* — 21 yx + 1447)
48 y5

GG
R TOPT H

2 2y -x)?
REpE ?(_};Lx)

G 1 2y - ) (165 + 20yx + 25%%)
R-‘%Prqr i y4

8 (2y- —10y" +5yx +2%°
R 2_7(y x)( y}}; v+ 2x°)
2y — x)(729* —48+° x + 1409° 5> — 116" + 29x*)
35
yx

oo 9
Riger o

Now let’ s return to discuss the recombination functions
in CVPT. The gluon recombination functions in the GLR-MQ
evolution equation are derived using CVPT at the double lead-
ing logarithrnic approximation (DLLA) ,i.e.,at the small x
limit'>) . We use the same way to recompute the recombination
functions but in the whole x region.

The coefficient function containing the gluon recombina-

tion function can be written as

et = | ok,

In the t-channel,

SCEHS(K) | Mo ¢ 12, (17)
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F/\,g(k3)F,1'g(k4)F"(k)F (k)F (k)FW'(kz) bare 202.
11272
kK k3k; Thus, the recombination function
where the current-gluon vertex v is L6 ¢
RGC, -G __ MCVPT (21)
L kbkl/l - g/wk * kly (18) e = Cbare ’

and

kyng + ksgn ks
F/\ﬂ(k3) = gy - i}éﬁu _ d/\ﬁ zk_qn/lnﬁ

(19)

The coefficient function of the contributions of a bare

A set of complete recombination functions using the
above-mentioned CVPT method is given in Table 2. A surpris-
ing result is that the recombination functions with the IR sin-
gularities in the CVPT method are inconsistent with that in the
TOPT method . We shall detail it in the following section.

Table 2.
REG 1 (2y - %)’ (18y” — 21 yx + 1447)
VP 48 Y
2 2y - 2)*(134” + 6% + 35%)
RA® 2
EG’T 27 }3(}'_37)2
R 1 (2y - %)(85y* — 93y’ x + 1065°«” - 93yx® + 31*)
PT 36 :)'4(:)'_ x)2
REEE i(Zy—x)(—103y2+5yx+2x2)
Yy x
ROG2G6 9 (27— x) (1444° — 360+° x + 541 v* x* — 440+° 5> + 221 * x* — 704x° + 125°)
CVPT 64 Sy - x)?
Y\ y X X

4 IR safety in the recombination functions

At the first step, we point out that the IR singularities in
Reypr originate from the gauge term in the gluon propagator
=gV = (Knf +

divergence if y—>x.

n*)/ ks n,where ks n ~ y — x arris

We decompose the propagator with the momentum % on

the two gluon legs according to TOPT in Fig.4. The on-shell

Fig.4. A covariant Feynman diagram containing

the gluon recombination function.

propagating momenta are

o K
k»k(zp+n,2LnkL) (22)
and
kZ
k”(2zp n,zp, n, kL) (23)

Where the sub-indices F and B refer to the forward and back-
ward propagations, respectively . The dominant contributions in
the LLA ( Q?) are from those terms with the highest power of
k% in the numerator of the propagator. Obviously, term r* or
d"f in Eq.(19) can combine with ftB or fﬁy in Egs.(22) and
(23) through the quark-gluon or triple-gluon vertex, respec-
tively. In consequence, the contributions from the forward
and backward components coexist in the two propagators with
the momentum % in these diagrams.

It is different from the recombination functions R,
the dominant numerator factor 7 * n in R§5orC only chooses
in Eq.(22) . Therefore, the contributions from the backward
components are suppressed at the LLA ( Q%) and the equiva-
lent particle approximation is available as in RS .

Such gauge singularities also exist in the derivation of

the GLR-MQ equationl] , where an unusual i¢ prescription is
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used at limit x < 1 and the result is finite after taking the
principal value. Obviously, the contributions from the back-
ward components in the gluon propagators cannot be entirely
excluded in this way. Thus, we can conclude that the recom-
bination functions in the GLR-MQ equation are really a part of
the twist-4 coefficient functions but not the evolution kernels
since two legs in Fig.4 are off-shell.

Of cause, any physical results are IR safe. The IR di-
vergences should be cancelled by summing up all related dia-
grams, including interference and virtual diagrams. After that
one can isolate the recombination functions from the coeffi-
cient functions in the covariant framework. However, at the
present moment we don’t have an available way to calculate
the virtual and interference diagrams. In the GLR-MQ equa-
tion such summations are evaluated using the Abramowsky-
Gribove-Kancheli (AGK) cutting rule-® . However, this ap-
plication of the AGK cutting rule has been argued in Ref.
[4]. Besides, the AGK cutting rules only change a relative
weight in the contributions of the real diagrams and they can-
not cancel any IR divergences.

Fortunately, the TOPT approach in the Bjorken frame
provides an available method to derive the recombination
functions. In fact, the recombination functions can be safely
separated from the twist-4 coefficient functions in this way,
since the backward components in two parton legs with the
momentum k are suppressed. Thus, the equivalent parton
approximation can be used. Furthermore, the contributions of
the gauge singular terms disappear due to the absence of these

backward components. To justify this conclusion, we use d

to replace 1™ in Eq.(16) and get the same results as Table 1.

Now let us look back to the CVPT method for the deriva-
tion of the recombination functions. According to the above-
mentioned discussions, we use d"f to replace I, 3 in Eq. (19)
As expected, one can get the same resulis as Table 1. From
the above-mentioned discussions we can conclude that the

forward propagators dominate the recombination functions.

5 Discussions and summary

An interesting question is why the IR singularities of the
gluon propagator in the twist-2 coefficient function ( Fig. 2
(a)) do not break the equivalent particle approximation. We
note that this propagator through the dashed line is on-shell.
Thus, Eq.(8) can be rewritten as

. K
= g% - TLn“nﬁ. (24)
k2,
Now the dominant contributions to the LL A ( Q?) are only
from the forward components and the equivalent particle ap-
proximation is applicable.

In summary, we show that the QCD evolution kernels
are frame- and gauge-independent, however, the separation of
these kernels from the coefficient functions depend on the
frame and gauge. The IR singularities in the recombination
functions inhibit us from safely isolating the recombination
functions . This result leads to the fact that the gluon recombi-
nation functions in the GLR-MQ evolution equation are un-

available. The methods avoiding the IR divergences are dis-

cussed by using the TOPT.
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