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Electron Trapping in Multipole Magnet
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Abstract The electron cloud effect limits the performance of several accelerators with high beam current, such as SLAC and KEK B

factories, the CERN SPS and the CERN PS. In this paper, the electron trapping in general 2n multipole magnet ( n is integer) is

studied, and we find that there exists electron trapping in the adiabatic region of the multiple magnet (n > 1) .
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1 Introduction

An electron cloud is generated in the vacuum cham-
ber by photoemission or beam induced mutipacting and
subsequent electron accumulation during a bunch or
bunch train passage. The electron cloud effect limits the
performance of several accelerators with high beam cur-
rent™” , such as SLAC and KEK B factories, the CERN
SPS, the CERN PS. In the early days of the CERN ISR,
the coupled oscillations of the proton and the trapped
electron hindered the high current coasting beam opera-
tion. In 1997, an anomalous multibunch instability at
CESR could be explained by the photoelectrons trapped in
the pump leakage fields. In this paper, using Hamiltonian
perturbation theory in noncanonical coordinates, we study
the electron trapping in general 2n multipole magnet, and
find that there exists electron trapping in the adiabatic re-

gion of magnet.

2 Hamiltonian perturbation theory in nonca-

nonical coordinates'?!

An Hamiltonian phase space forms a natural sym-
plectic manifold. In 2N + 1 dimensional extended phase,
let us choose coordinates (gq,, p;,t), i=1,--,N. The
Poincare-Cartan 1-form of particles is

7 = pidqi _— Hcdt, (1)
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where H, is the Hamiltonian function, and the exterior
derivative of 7 is a 2-form

w =dy =dp, A dg, - dH, A dt. (2)
Without lossing generality, we choose the noncanonical
variables {Zﬂ}, p=1,2N+1, Usually z,5,, = ¢,

so the 1-form for particle is

y = vy.dz - Hde, (3)
3 3
Y, =p~aZ,H=Hc—p-§—%.
Under the coordinate transformation z = {z# | > Z =

{Z,1, 7 becomes

Y = P/AdZ‘u. ’ (4)
dz,
L, =7 57

For 1-form Lie perturbation, suppose ¥ can be expanded

into series of a certain small dimensionless parameter ¢

y = Zen,y(n) . (5)
n=0
Under the coordinate Lie transformation
Z =1z 5
r--.-n1,1,T,

T, = exp(e'L,) ,
the 1-form ¥ = 7,dz, transforms according to the follow-
ing law

r="T"y+ds, (6)
I'=rT,dZ,, and s represents the gauge transformation
function in the phase space. I" can be expanded into the

series of €
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FEel
Y = Zen[‘(n) ’ (7)
n=90
P(O) — ),(0) + dSO, (8)
F(l) — y(l) _ L1 },(0) + dsl, (9)

1

I = y® Ly 4 (2L - L) 7 + ds,.

(10)
Besides, the Euler-Largrangian equations for z; can be
derived from the 1-form ¥ = 7,dz, - Hdt ,
dz dH 9V,
[ d_tj = é—z + 'W s (11)
where w; is the largrangian bracket, and w; is invariant

under the transformation y—=>7¥ + ds.

3 Guiding center motion of electron in equi-

librium magnetic field'*

The motion of the charged particles in electromagnet-
ic fields is one of the oldest topics. The trapping of parti-
cle in magnetic configuration and the particle diffusion de-
pend on the long time behavior of particles. In order to
integrate the long time particle motion, we need to make
an expansion of the motion equations in gyroradius, and
average out the rapid particles gyro phase motion to obtain
the equations for the guiding center motion. The problem
of the guiding center is essentially the perturbative solu-
tion of the motion of the charged particle in given electro-
magnetic field. In the following, we study the guiding
center motion of the charged particles in equilibrium mag-
netic field using the 1-form perturbation method in the
natural unit system.

The 1-form of charged particle in equilibrium mag-

netic field is

y = (A(x') +v) - dx’ - %vzdt . (12)

A(x') is the equilibrium magnetic vector potential, and

v the velocity vector of particle. Expand ¥ into the series
of the small parameter e ~ l_‘,g( o is the Larmor radius of
B

particle, Ly is the inhomogeneity scale of magnetic field)
Y = Yo+ €5Y 4 €aYa + s (13)
Yo = A-dx , (14)

1

Y, = v+ dx - 7v2dt, (15)

v = ub + wé , (16)
4 = cosfé, - sinfé,, (17)
b -8 p-vxa, (18)
B
é = — sinfé, - coslé,, (19)

where &, ,é,,b form a local right hand orthogonal sys-

A

v é
v é,

tem, and § = arctg is the gyro angle of particle mo-

tion. In order to remove the ¥ dependence on #, we
make Lie transformation y—=>1I", I is

P =T, +eply + €30, + -, (20)
where I'y, Iy, I',, T are

'y = A-dx, (21)
L= ui)'dx—(%uz+,a3)dt, (22)

r
r, =_{,1(R+%13(13-VxB))}-dx+gde,

(23)

r={asu-u[R+20G-x0)8]}

dx + udd - (u’ + pB)de,  (24)

2
w

B,R = (Véz)'él .

respectively, and g =

V]

4 Electron trapping in 2n multipoles

The guiding center motion equation for x and u can

be derived from 1-form Eg.(24):

B 3 R
dx _ SH 1 b« VH, (25)
dt b.B* 9u }.B"
1
%’i=-A B -VH, (26)
t b+ B

where B~ =Vx(A+ulA)—p[R+%(l3-Vx

E)IA)] ) , H = %uz + uB . In the general multipoles ex-

pansion, A is independent of z coordinate, and A =

As. We choose é, = £, then R and b-V x b vanish,

so the guiding center motion equation can be simplified as

dx _ ¢ 2V xb m

—d—t_bu+u B +Bb><VB, 27
du 2
o =" BB VB . (28)

In cylindrical coordinate (r, ¢,z), x = 1f + 2Z. Fur-

ther, the guiding center motion equations can be ex-
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pressed as
Eld—: = bu , (29)
% = u2(—vl‘#+§(3 x VB) - £, (30)
du 7 v
E = - FB ¢ B. (31)

The field of normal 2n poles magnet is
B = k"' (sinngf + cosngd ), (32)
After taking Eq. (31) into the Eqs. (28),(29), (30),
the guiding center motion equations in the adiabatic region

of magnet now are

Tl usinng , (33)
((ii—f = Tucosngo , (34)
dz e o2 1 )
I = (n - l)cosngo( . T U k) (35)
du

Tl pk,(n - 1)r"?sinng . (36)

Finally, from Eqs.(32),(33),(34),(35), in the adia-
batic region of multipole magnet (7 >0, n>1), we can
get

o

2n
k.r

& -1 (B 2B, (37)

#28%
| .
where E, = U+ uB is the total energy of electron
(constant), r, = constant. As for n =1, % =0, this is

the dipole case. In this case, the electron trapping don’t
occur, many electrons are confined to the vicinity of the
pipe wall and are lost quickly, neither gain significant
amounts of energy nor directly harm the beam. But for

dz

* dt

certain longitudinal direction, so electrons are trapped in

n>1 < 0, the guiding center of electron drifts in a

the magnetic configuration until they drift out of the mag-
net. Hence, they may take some active role in the collec-

tive instabilities.
5 Discussions

In this paper, using the Hamiltonian perturbation
theory in the noncanonical coordinates, we have studied
the electron trapping in general 2n multipole magnet. Our

theory only applies for the adiabatic region of magnet, i.
e

e. in the region with I

41, where the trapping occurs.
B

In the other region of magnet, the motion of electron is

more complex.
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