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Abstract The dependence of entropy index ¢, on the width and shape of multiplicity distributions are studied in detail by using

Monte Carlo method and comparing with the results from NA22 experiment. It is found that the entropy index is insensitive to the

shape of multiplicity distribution but decreases with the increase of the distribution width . The latter observation contradicts the usu-

ally expected role of the index, indicating that g, is not an appropriate parameter for measuring event-by-event fluctuation.
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Since discovery of large local fluctuations in a high
multiplicity event by JACEE collaboration'' ,The study of
local fluctuations in multiparticle production has attracted
much attention of both theorelicians and experimentalists .

Cao and Hwa studied the event-by-event fluctuation
of multiplicity fluctuation, called erraticity, and defined an
as a measure . They suggested that this

entropy index g, -+

index is adequate to describe fluctuation degree of spatial

2.1

patterns

The erraticity method has been studied both theoreti-
cally **' and experimentally® * . The basic idea of this
method is the following.In contrast to the sample factorial

moment , the event factorial moment is defined by
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Consider a certain pseudorapidity region A, and divide it
into M bins. The n,, is the number of particles falling in-
to the mth bin for event e. In order to measure the fluctu-
ation in F(f] . the normalized factorial moment in event
space is then defined as:
, F
C,, =<$, ¢, = <—F%—> (2)
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where the average (**) is carried out over all the events
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and p is a positive real number. The erraticity moment in

the event space is defined by:

dcC
2, = # . (¢,Ind,). (3)
If C, , has a power-law behavior in M, i.e.
C, o (M) o M, (4)

|

then it is called erraticity’®’, and ¢, (p) is corresponding

erraticity exponent. The entropy index is defined as:

23
_ d‘»bq(p) q (s)

He = Tp = 9InM-

p=l

Cao and Hwa suggested that the entropy index s, can be a

measure of the event-by-event fluctuation of F,” and

showed that g, >0 is a criterion for chaos """ .

Based on the fact that the erraticity quantities de-

fined above are measurable, the erraticity was applied to

analyze the NA22 data at Vs = 22GeV''™ . In the present
letter, a cascade model, called a model, is used to study
multiplicity fluctuations and a sample with non-zero entro-

e generated. In this model, the phase

py index
space region A is firstly divided into two equal parts. The
each pan is further divided into two equal parts. After v
dividings, the number of partitions of A is M =2". The
probability of a particle falling into a given partition is de-

fined as:
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1 is also plotted in the figure. The slopes (entropy indices)

W, 2.1 = a—(l + ay)s . '
(6) in these three cases are close to each other, confirming
W, = %(1 —ay), (j=1,-,27"), that the erraticity behavior is dominated by statistical fluc-

where j is the number of the partition at the v-th step, 7
is a random number ranged from - 1to 1, a is a positive
number smaller than unity. To get pure statistical fluctua-
tions, we set @ =0. By using Monte Carlo method, the
result of @ model with ¢ =2, v =6 is obtained and the
erraticity moment in one-dimensional pseudorapidity space
is calculated .

What interests us is whether or how the entropy in-
dex depends on the width and the shape of the multiplicity
distribution. Thus, we carried out a simulation of @ mod-
el with the number of particles in each event obtained
from various multiplicity distributions. The first step is to
generate a 60, 000-event sample of Poisson distributed n
with average multiplicity n = 6.15, which corresponds to
that of the NA22 experiment. For comparison, a 60, 000-

(:11] i used . In either con-

event sample with fixed n =6
cerned sample, only statistical fluctuations exist in the
events of a certain multiplicity n. However, an additional
multiplicity fluctuation, included in the Poisson sample,
attributes to the event-to-event fluctuations.
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Fig.1. 2, vs. InM in rapidity space for Poissonian and fixed

n samples, compared with the experimental result from

NA22!"! | The straight lines are linear fits.

Calculated for the two MC samples in the a = 0
model, The resulting erraticity moment X, as a function
of InM for two MC samples in the a =0 model are shown

in Fig.1. For comparison, the result from NA22 data''"’

tuations in the low-multiplicity sample“'”‘ .

On the other hand, if we consider the fixed-n sam-
ple as a sample with the multiplicity distribution width
o =0, and the Poissonian sample as that with a positive
value of o, both the Poissonian and the experimental
samples have additional multiplicity fluctuations in com-
parison with the fixed-n sample. The influence due to the
i differences of three samples is negligible. From the
slopes by the linear fitting shown in Fig.1, one sees that
2, of the fixed n sample increases faster than that in the
other cases. That is to say, cf. Eq.(5), the entropy in-
dex p, is the largest one in the fixed n sample, and the
additional multiplicity fluctuations in the Poissonian and
experimental samples made the entropy index y, decreas-
ing, which is in contradiction with the expectation that 4,
measures the event-by-event fluctuation. This observation
motivates a further investigation .

For this purpose, a function that can generate the n
distribution with the different width o at a given n. The
usual choice, say Gaussian function, is however inade-
quate in the present case, because after omitting the un-
physical negative-n, the distribution is no longer in the
Gaussian form and the average multiplicity deviates from
the input value of 7. The larger the width is, the more
the deviation from the given value of n would be.

To avoid this complication, we propose a new func-

tion

f(n) = Ane“'("'b)z, (a >0), (7)

where A is the normalization constant. The characteristic
shapes of f( n) for various values of @ and b are exhibit-
ed in Fig.2. The values of a and b for given values of
average n and width o are available in Table 1. The val-
ues of a and b for other values of n and ¢ in the ranges
of 3xn <7 and 0.5< g<3 can be obtained by intrapo-
lation.

Fixing the average multiplicity at n = 6.15, 20
event samples are generated with a multiplicity distribu-
tion width o ranging from 0.35 to 4.21. The resulting en-

tropy indices u, versus ¢ are plotted by solid triangles in

Fig.3. The shadow band is the entropy index for the
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Table 1. Parameters a and b for some given values of /i and o .
Average multiplicity 7
3 4 5 5.5 6 6.5 7
0=0.5 a=1.9248 a =1.9639 a=1.9762 a=1.9822 a=1.9826 a=1.9839 a=1.99
b=2.9115 b=3.935 b=4.,9485 b =5.4535 b=5.9575 b = 6.4605 b = 6.9635
g=1 a=0.4135 a =0.4602 a =0.4767 a=0.4812 a =0.4842 a =0.4867 a =0.4886
b=2.5275 b=3.707 b=4.7804 b=5.304 b=15.8225 b =6.3375 b =6.8505
c=1.5 a=0.1078 a=0.1687 a=0.1937 a =0.2001 a =0.2046 a=0.2078 a=0.2101
b =0.657 b =3.0805 b=4.417 b =5.0005 b = 5.5605 b =6.1055 b=6.6415
s=2 a=0.0102 a = 0.0606 a=0.089 a=0.0974 a=0.1034 a=0.1078 a=0.1109
b= -28.3185 b=0.877 b =3.5525 b=4.361 b =5.0555 b=5.688 b =6.2835
c=2.5 a =0.0141 a =0.0388 a=0.0475 a =0.0542 a =0.0593 a =0.0632
h=-12.182 b=1.1 b=2.811 h =3.9685 b =4 8685 bh=5.633
g=3 a=0.0131 a =0.0207 a=0.027 a=0.0321 a =0.0363
b= -8.445 b= -1.6645 b=1.32 b =3.0931 h =4.3445
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Fig.2. . n. . . .
'8 fn) vs. n Fig.3. The dependence of entropy index y, on width o. The

(a) with various a at fixed b = 5; (b) with various b at a =0.1.

fixed-n sample. It can be seen from the figure that p,
decreases with the increase of o, further confirming the
unexpected trend seen in Fig.1. Note that the entropy in-
dices of the Poissonian sample and the NA22 experimental
data are consistent with the curve obtained from f(n).
Let us now turn to the relationship between erraticity
and the shape of multiplicity distribution. Dividing the
whole experimental sample into two subsamples according
to the conditions of n < 7 and n > i, respectively, as
done in Ref.[11], we obtain two samples with i, = 3.94,
o, =1.56 and n, =9.36, o, =2.41, respectively. The
multiplicity distributions of these two subsamples ( referred
to “cut distributions” in the following) , together with the
fCn) distributions with the same value of 7 and o in
these two subsamples, are shown in Fig.4(a) and (b),
respectively. It is seen that the shapes of cut distributions

and corresponding f(n) distributions differ considerably.

shadow region represents the result in the fixed-n sample case.
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Fig.4. Comparison of the shapes of the cut multiplicity distri-

bution and the distribution f(n) with (a) A4, =3.94, ¢, =1.56
and (b) n, =9.36, ¢, =2.41. (the solid dots with dashed line
denote the cut distribution, the open stars with dotted-dashed

line represent the distribution f(n).)

The erraticity analysis is then performed for all these
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cases. The corresponding entropy indices are shown in
Fig.5. It is found that the entropy index p, is insensitive
to the shape of the multiplicity distribution. Therefore, it
is natural that the resulis of the Poissonian sample fits

NA22 data so well in Fig. 1.
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Fig.5. The dependence of u«, on the shape of the distribu-

tion. For easy reading the result of y, from the cut distribution

and from the corresponding f{ n) are slightly shifted horizontally .

In this letter, we introduced a new form of multi-

plicity distribution, with which the average and the width

B ¥

can be freely changed by two parameters. In terms of this
distribution, the dependence of entropy index on the
width and the shape of the multiplicity distribution are
studied in detail by using the Monte Carlo method and
compared with the result from the NA22 experiment. It is
found that the entropy index is insensitive to the shape of
the multiplicity distribution, but decreases with the in-
crease of the distribution width. The latter observation
contradicts the expeclation that entropy index p, measures
the event-by-event fluctuations of factorial moments. The
reason is the following. According to the definition of £, ,
Eq.(5), g, is equal to the derivative of ¢ (p) at a cer-
tain point p = |. Thus g, might not be a monotonically
increasing function of ¢, , consequently, the fact that p,
cannot be a measurement of the event-by-event fluctua-
tions is understandable. It is necessary to find another ap-

propriate quantity for this purpose .

One of the authors ( Zhang Hui-Lan) would like to
thank Fu Jing-Hua for helpful discussions .
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