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Abstract  From QGP kinetic equations with collision integrals, by using the realaxation time approximation , we calculate the distribu-

tion functions to the second order correction. We obtain the distribution functions for quarks (and anti-quarks) and gluons under the

perturbation of the fluctuation of the color field. Then in the high-temperature-low-density area, we discuss the characteristics of the

distribution functions, and use them to get the net baryon density and the energy density.
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1 Introduction

One of the main objectives of the future high-energy
experiments is to detect a new state of matter called the
quark-gluon plasma (QGP), which is expected to be
found at large collision machines such as RHIC and LHC.
Considerable attention has been paid on the mechanism of
the formation and the evolution of the QGP'—E' . The fun-
damental theoretic methods dealing with the QGP are the
finite-temperature field theory, the kinetic theory and phe-
nomenological analysis. The kinetic theory is a statistical
theory that can deal with both the thermal equilibrium and
the non-equilibrium phenomena. The kinetic equations for
the QGP have been formed under the general frame of the
statistical theory and its dynamic basis is the quantum
chromodynamics (QCD), which the component particles
of the system obey . They are widely used to investigate the
properties of the QGPLH: .

The QGP,if formed in the relativistic heavy ion colli-
sions , is generally believed to be in a thermal non-equilib-
rium state during initial stage, so it is important to study
non-equilibrium phenomena in the QGP. According to sta-
tistical mechanics, if the particle distribution function of

the system is known, any observable physical quantities
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can be obtained through standard method. Hence, the
non-equilibrium distribution function is the basis for solv-
ing non-equilibrium problems. Unfortunately it is difficult
to obtain the non-equilibrium distribution functions by
strictly solving the QGP kinetic equations. However, when
the fluctuation of the color field in the QGP is at the gT
level (g is the coupling constant of perturbative QCID) and
T is the temperature in the QGP ) , many properties of the
QGP in quasi-equilibrium have been discussed in the QGP
kinetic equations without collision integrals® "' . Noting
the fact that one usually takes collision integral in the re-
laxation time approximation, we calculate the distribution
functions in the QGP kinetic equations under this approxi-
mation in this paper, and assume that the perturbation of
the color field fluctuation is at the g7 level and the fluctu-
ation makes the QGP in a non-equilibrium state.

Since the fluctuation is a small quantity, the system
will be in quasi-equilibrium, in other words, it is nearly in
equilibrium state. The distribution function of the system
can be generally described as

F=F" 4 xfV 467 4, (1)
where £ is the distribution function in equilibrium, £,
£ are the first and the second order corrections to the dis-

tribution functions in equilibrium, « is a scale factor which
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is introduced to describe the order of the corrections.
Then the distribution functions in quasi-equilibrium can

be obtained by using the step-by-step iteration method.

2 Solve the kinetic equation to the second or-

der correction

In a semi-classical limit, the distnbution functions

are governed by

PDJCep) + £ S S} = €,
(2)

pDCp) - S5 A T} = G
(3)

p'D.G(x,p) + Epr %{R”C(Lp)} = Cg,

(4)
where C,(i = f,f, G) are the collision integrals, f( x,
p).f(x,p),G(x,p) are the distribution functions of
quarks, anti-quarks and gluons , respectively .

A (x) = A(x)F,F"(x) = F¥(x)I" are the
four-dimension potential and the field tensor of the color
field , respectively ,and /° is the generator of group SU(3)
in the fundamental representation. The field tensor is de-
fined as
Fo(x) = ,A7(x) - 9, A% (x) + gl Al (2) Al (x),

(5)

with f,, being the structure constants of the SU (3)

group. Z"(x) = A (x) TF’(x) = F* (x) T, with
T being the generator of SU(3) in the adjoint represent-
ation .

Correspondingly , the field equation is
D" (x) = j(x),

Flx) = - gJ“E ((]éfr);p"{[f(x,p) ~Fx p)) 4

2ilfu Gy (x,p) }. (6)

Eqs. (2)—(4) and Eq. (6) are called the kinetic
equations of QGP'' -

However, the proper form of the collision integral is

not given. In the phenomenological estimation, the colli-

sion integral is often taken in the relaxation time approxi-

mation,

C =—i(i—i(m)
T

where i = f,f or G represent the distribution functions,

0) =j40) ’7(0) or

functions in equilibrium, & and 7 are the single particle

G' are the corresponding distribution

energy and the relaxation time, respectively.

Since the QGP kinetic equations are non-Abelian
gauge invariant , for convenience,we work in the temporal
gauge, A% (x) = (0,A,(t)). Then the relation between
the color electric field and the vector potential becomes

simple,
E(x) = - —A,(x).

The QGP kinetic equations in the momentum space

and in the temporal gauge are

wf(w.p) + igvjz wL[E,(wl),f(w -w)]-
ig < df( - w,
7 {E(w) d_P,- _'}—
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where v, = p./p,.

When the QGP color field is not very strong, in other
words, it can be taken as a perturbative quantity, the dis-
tribution functions can be expanded as Eq. (1). Consid-
ering that the equations of the field are coupled to the dis-
tribution functions through the color current, the change of
the distribution functions will lead to the change of the
amplitude and the frequency of the field. The field inten-

sity and the frequency can be correspondingly expanded as

E, = EV + EP 4+ -, (11)
w=0"+ 0" + 0?4 (12)

Inserting them into Eqs. (7)—(10), then the first order

cortection equations are

w'm_/“)(w)d»igv,/\‘ _(_T[E(l) l),_f“))((u—wl)]_
lll‘ @

'dfm(w - wl)}_

iig_'v{E(‘n(wl)

N dp;
i_gy \\{ (U( fm) ‘”‘wl)}
2 ",;,_ll dptoi

—}uu»-fww», (13)

Leed
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LCEEN

2 dp,

0
1g ‘\W{E(‘I;(wl ’dli (w - w,)
2 dp o
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(16)
After solving Eqs. (13)—(16),we get

1 . £ df (n
f e+ il dp‘F (w) +

P k% ERREELEL T QGP 3 IR B+ 8 17 R ¥

v, df) g
e e e b ()
Ay 8 _dl o _
f = Tl e dp, ' (w)
. v, dTU) o
. _ . , 1
g 0" Y () (18)
¢ = g dcmb‘“(w) +
T w+ilw dp,
»(Q)
ig o 4 F (), (19)

2 am _
w(mz - _ f—fj pz[ Nf(dj{m + dfm) + 21‘\"“(1(,'(0’] ‘
T Jo

(20)
where N, is the flavor number and N is the color num-
ber.

The equilibrium distribution is colorless. We take

Fermi-Dirac distribution as quark (and anti-quark) distri-

bution and Bose-Einstein distribution as gluon’ s, that is

F9 = {explBle - )1+ 1}, (21)
o = {exp[B(e + p)] 4+ 1}, (22)
G” = lexp(Be) - 117", (23)

where € is the single particle energy which satisfies the

on-shell relation ¢ = v/ p> + m*, 3 is the reciprocal of the
temperature and p is the chemical potential .
Inserting Eqs. (21)—(23) into Egs. (17)—(19),

we get

2i i
j‘” = (07 '€ ﬁv

TV vilrexplple - 0T+ 1%
expl Be - /" E" (w),

2ig B,
w® i/t expl Ble + p)T+ 1"
expl Ble + )Y EV (w),
2ig .

G(l) —
T T o™ +ilrexp(Be) - 17

(24)

]{l) -

(25)

exp(Be)G"” i‘,”(w).

In the similar way, the second order correction distribut-

(26)

ions are

) 1 R ,
fl = 2g2 —('53+—./—E:]) (wl)Ej”(w - wl)é\,,,,ﬂ'u,v,» X

exp[ﬂ(s - )1 {1 - expl 8(e - 1)1 }fm
{1 +explple - )Y

(27)

)Ej“(w - wl)(?,,,,ﬁzv‘vj x

_ 1 .
f<2) 2g2 - : E:” (‘”1
w -/t
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expl Ble + p)1{1 - expl Ble + p)] } o
{1 +explBle + )Y

(28)

6? = 288 N —5 1 E:”"(w.)Eﬁ-”(“’ - w])Sdﬁzv,-u,- X
w

+1i/7
exp(Be)[ -1 - exp(Be)]
(exp(Be) - 11°

where i',((u) =N, E(w).

¢ (29)

Therefore , computing to the second order correction,
the distribution functions are

. , 0 explple - p)l
ST+ 28 T (e expl Ble = )T+ 1
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(0™ + (/7))
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(30)
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(32)
where the relativistic limit v,~>1 and w\* = w;” = w'"

A, = gT are used.
Considening two kinds of light quarks, ¥, = 2, and
from Eq.(20), we get

. 4 R llzgz 12
w = ?g T2 + 3 ]
s

Inserting Eq. (33)into Eqs. (30)—(32), we can get the

(33)

distribution functions of the quarks, anti-quarks and glu-

ons.

3 Results and discussions

It is generally believed that the QGP, if formed in the

central area of the rapidity in high-energy heavy ion colli-
sions, has high temperature (more than 175MeV at least)
and low chemical potential (less than 50 MeV) . Now we
are in a position to discuss the characteristics of the distri-
bution functions of component particles in the QGP. In
the computation, the coupling constant g is taken as 0.3
and the relaxation time is taken less than 1fm. Noting that
gluons can attain equilibrium more easily than quarks in
the same condition, the relaxation time for gluons is less
than that for quarks'"

7 The results from the numerical

calculation are shown in Figs.1—4.

3.1 The quark distribution function in the high-

temperature-low-density area
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Fig.1. Comparison of the quark distribution

functions in quasi-equilibrium( the solid lines)
and the corresponding functions in equilibrium
(the dashing lines) . The relaxation time is 1fm,
and from up to down, the temperature is 600,
450,300, 150MeV respectively.
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Fig.2. Quark distribution functions under
different relaxation time in quasi-equilibrium.
The temperature is 450MeV . From up to down,
the relaxation time is 1,0.6,0.3fm, respectivly.
In order 1o distinguish them clearly they are plotted

in a small energy span(400—550MeV) .
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Fig.l shows that at any given single particle energy
€ ,the value of the quark distribution functions in quasi-
equilibrium (the solid line) is larger than that of the cor-
responding distribution functions in equilibrium ( the
dashing line) . The higher the temperature is , the larger
the difference between the two kinds of distribution func-
tions is. Fig.1 also shows that the distinct difference ex-
ists near the Fermi surface. We all know that in equilibri-
um,when € = u, the value of the distribution function is
0.5,no0 matter how high the temperature is. However, in
quasi-equilibrium, the value we get is larger than 0.5.
From Fig.2,one can see that the curve transfers upward if
the relaxation time of the system becomes longer. It means
that the difference between the distribution functions in
quasi-equilibrium and in equilibrium is larger if the sys-

tem needs more time to attain the equilibrium state .

Fig.3.

Comparison of the gluon distribution

functions in quasi-equilibrium (the solid lines) and the
corresponding functions in equilibrium (the dashing
lines) . From up to down, the temperature is 600,

450,300, 150MeV . respectively, and the relaxation is 1fm.

0 00 100 600 800 1000

eMeV

Fig.4. Gluon distribution functions under
different relaxation time in quasi-equilibrium. The
temperature is 450MeV. From up to down, the

relaxation time is 0.3,0.6, 1fm, respectively .
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3.2 Gluon distribution functions in the high-temper-
ature-low-density area

In Fig.3,it is easy to see that the curves of the glu-
on distribution functions in quasi-equilibrium (the solid
line) are away from that of the corresponding distribution
functions in equilibrium (the dashing line). The higher
the temperature is,the more obvious the tendency of devi-
ation is. In addition, the smaller the gluon energy is, the
larger the deviation is. From Fig.4,it is obvious that the
curve transfers downward if the relaxation time becomes
longer. It means that when the system takes longer relax-
ation time, the gluon distribution function is farther to its
corresponding equilibrium function.

According to the statistical physics, if the paricle
distribution functions in a system are known, the net parti-
cle number density and the energy density can be ob-
tained . They are

Ve S[EEG -, (34)

E = \‘J dp (S e f v 6) (35)
T (27r)"p' AT ’

where N and E are the net baryon density and the energy
density .
Inserting Eqs. (30)—(32)into Kqs. (34),(35),

using e =+ p° + m®, and taking fm’ as the unit of vol-
ume instead of GeV *,the net barvon density and energy
density can be gotten in the high-temperature and low-
density area. At different temperature , the results are giv-
en in Table 1 (the relaxation time is 1fm and the chemical

potential is 50MeV) .

Table 1.
T/MeV 300 450
N 0.13422 0.43657
E/N GeV/im™ ) 1.476135 §.29649

In Table 1 we can see that the net baryon density
and the energy density are consistent with the phenomeno-
logical estimation within the order-of-magnitude. For ex-
ample, at the energy scaling of RHIC, according to the es-
timation of the Bjorken formula, the energy density is
3.5—7.5GeV/fm’ .

In short, based on the kinetic theory, we solve the
QGP kinetic equation in the relaxation time approxima-

tion. Calculating to the second order correction, we obtain
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the quark (anti-quark) and gluon distribution functions in

quasi-equilibrium. Then in the high-temperature-low-den-

sity case, we especially analyse the characteristics of the

distribution functions and calculate the net baryon number
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