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Abstract The equivalence of two ¥’ forms is proved by matrix calculation. The bias of minimization estimate is also discussed.

The simplified K-value measurements are quoted to test the conclusion quantitatively .
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1 Introduction

The covariance matnix is usually used to construct the
Xl function for correlative data which is to be minimized to
acquire best estimates for parameter interested " . It is
frequently the case that experimental data are affected by
overall systematic error, often just one common normaliza-
tion uncertainty. Under such case, the n X n covanance
matrix V for n measurements could be constructed as fol-
lows: the diagonal elements are given by the sum of the
squares of the statistical o, , systematic point-to-point

&+ and common normalization uncentainty o,,,, for each

-
measurement . The correlation between data points ¢ and j

is contained in off-diagonal matrix element V,, which is

estimated by the product of o . of measurement i and

norm

@0 Of measurement j. The expression to be minimized is

then'
x = Vi, ()
where
v, k,
x, k,
7= :
v, -k, /

is the vector of the residuals between experimental obser-
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vations x, and theoretical estimations #, .

Apart from matnix method, an alternative way to han-
dle corrclation problem is called factor method *** . A nor-
malization factor f is introduced and is to be fitted as a

free parameter to take the correlation into account,

\1 :_.l\_ K p ;_." l (7Y

where o, is the relative common normalization error and

2

2 2 2
=0t
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o

The relation between these two methods was first dis-
cussed by D’ Agostini'> . However in Ref. [ 5], the
equivalence of two Xl forms is proved only for two mea-
surements case. In this paper, the equivalence proof has
been extended to multi-measurement case. In addition,
some experiment results are quoted to test the equivalence

quantitatively .

2 Equivalence proof

2.1 Covariance matrix construction

In order to get analytical results, following D’ Agosti-
ni's approach, we only consider the constant fitting case,

that is, the theoretical expectation £, is a constant , denoted

* Supported by National Natural Science Foundation of China (19991483) and 100 Talents Programme of CAS (L-25)

1} In this paper, chi-square mimmization is adopted to obtain the best estimated value. For experimental data minimization. the MINUIT package is used.

The detail explanation about chi-square minimization technique and MINUIT package can be found in Ref.[2_ .
371376
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as k. Assume there are n measurement values x,, and
one scale factor f, which affects all n measurements. As
an example, x; could be the cross section at energy i,
and f denotes the overall normalization factor in the deter-
mination of luminesities at all n energies. Then, x; will
be related with the luminosity L, of e e collider at ener-
gy i by the equation
N

x = ' (N, :

; / .+ events number) ,

and therefore be related with the overall normalization fac-
tor /. We further assume that f has the expectation equal
to 1, and its relative error is known as o, ; and x, has un-
certainty of o, , which is known' . In this case, consider-
ing the correlations between n measurements, the covari-
ance matrix is then

o 0 0

0 Fe 0

The corrected measurement values are

Yl le
Y, X,

Y.) \/X,
aid the covariance matrix for Y is obtained from the error
propagation

Vy = MV,M', or (V). = MM (VO M,
iy

. - The elements of V, are given

where M, = Y, /0¥,

. |
V. A Y, ay, Vv
e T 13X EY o
- = T R sl —
and explicitly”' , we have
2 2 2 2
o)+ x,0, 1 x,0, X x,0
2 2 22 2
X, X,0, Oy + X0, x%,0,
Vy = . . . . - (3)
2 2 2 ! 2
X%, 0, Xx,0, o, + %0,

1) o, could contain the the statistical and systematic contribution, that is 2 = o2

Correspondingly, the y* reads:

Yo = o2 = k) (V) s (x, = k), (&)
e=1 j=1
where subscript m indicates the matrix method and for

simplification, the V,'s subscript Y has been sup-
pressed. Notice x,0, = o', , that is the normalization un-
certainty for points i, the V here is just the covariance

matrix used in Eq.(1).

2.2 Expectation and variance from covariance ma-
trix method

The minimization of Xf.. expressed by Eq. (4) leads
to the best estimates for expectation and variance:
i . | " | o)

k - : | from =0] ,and o]

(5)
where V| is the cofactor corresponding to V, . For clear-
ness, most of symbol conventions and complex formulae of
matrix are relegated 1o the appendix. Here, the key issue
lies in the calculation of the inverse matrix. According Lo
Formula (A. 1), together with Fqs. (A.4) and (A.5),
we finally transform the calculation involving inverse-ma-

trix into the summation of cofactors of the adjoint matrix,

as shown in Eq.(5). Notice

R ) . . .
(8,07 + gxx,) - 8.0, V., - 8.0

X, = ——/———— - = —

¢ =

ox, ox,

]

combining Formulae (A.2) and (A.9), it can be worked

out:
- x :
km = T 12 Ta .. T (6)
N RSN CIEE. )
2 == el
where 1 is the weighted average defined as
AR
X = \‘——»‘ ) N
ol o
and ¢’ is defined as
o a l
1 _ N : ( N\ )
= Y, 4, or o, =1, )
o, o, =0

Notice Formulae (A.6) and (A. 7). it can be obtained

2
+o

tat pp -

2) The details of correlated matrix construction can be found in Ref. 5, where two frequently happened cases, the offset and the normalization rases. have

been studied.
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Here the definition of ¥ has been adopted to transform the

denominator of Eq. (7) into that of Eq. (8). Using

L (x - ) .
identity E , — =0, r could be further written
=1 Gl
as
r= !
) ] T \"‘(I' - L)J
Ly
"y (x, - 1) X
Notice ] L,,,I * =~y (n-1),s0
i=1 -
(r) = ‘ (9)

This is just the formula firstly given by D' Agostini in
Ref. {5 . It can be seen that if there are few data points
and normalization crror 4, is so small that r = 1. the most
probable value of the physical quantity equals to the
weighted average x; otherwise the Eq. (9) shows a bias
on the y”-estimated result when, for a non-vanishing o,,
a large number of data points are [itted. In particular, the
fit produces on average a bias larger than the normaliza-

> 1/ n=1).

tion error itself if &
2.3 Expectation and variance from factor method

Now we turn to factor method. A scale factor f is in-
troduced to take into consideration of the correlation. Chi-
square has the comparatively simplified form:

) - 1)?

4 > — 4+ ; (10)
- J-
where subscript { indicates the factor method. The mini-
mization caleulation is simple for factor method. From
AL =0,
) ke
{ AL 210
9 f

it can be obtained

ko= f-x,
P |
f= 0202 n n (x _ x)Z (11
2 izl j=1 G.0;
The inverse of covariance matrix is
3x[ axr
o 1| dkdk I9fdk
v =75 32,2 33,2 =
Xt <X
3kaf dafaf
Nl X
= o Lol
SR N
e o
therefore
1 %\x. {\x‘
R i Rt
| O 10, =10
V, = : ,
Dv-l "y n 1
f SN
ol = .
where
- 1 N1 Cy X, - X,
Dv":‘vfl‘= 2'v:+§\ 71
! g, o :TIJ;%IJ 0,0;
From V,, the variance of k, reads
2 22
2 6, +0rx
i, = 73 R )?
1+ 20 .\ 15T
- - 22
2 HiA oo

Comparing Eqs. (6) and (7) with (11) and (12), the
exactly same analytical results of two methods show their

equivalence directly.
3 Experiment testing

R, the ratio of the hadron production cross section
via single photon annihilation to the lowest order point-
like QED p1* p1™ cross section o, =4na’/3s, is a funda-
mental quantity in e” e~ interaction. It is calculated in
the quark-parton model as R =32, Qz, , where ( is the
quark electric charge, and the summation runs over all
the produced flavors. Neglecting the lowest order QCD
correction and the electro-weak effect, in the energy re-
gion without any resonances, R is a constant, which
equals to 11/3 within the region from 22 GeV to 37 GeV.

In experiment, the ratio of R is calculated according

to

1) The R value measurement at BESH has been described in Refs. _6,7], where the detailed calculation about experiment R value could he found.
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(N - N,)
L(l +6) -0,

where N is the number of multi-hadronic events detected ,

R = (13)

Ny, is the estimated number of background events, L is
the integrated luminosity, «(1 + &) is the acceptance for
the multi-hadronic events with radiative effect included
and (1 + &) is the radiative correction factor due to high-
er order QKD processes up to order o’ . All the quantities
on the right side of Eq.(13), except o, , contain possi-
ble systematic errors. According to the error analysis of
the first paper of Ref.[4], the total systematic error is
+ 3 % , where the overall normalizaiton error contributes
+2.4% and £ 1.8% 1is due to the point-to-point er-
ror . The relevant R values and corresponding errors are

listed in Table 1.
Table 1. Values for R'*'. The errors quoted include the
statistical and point-to-point systematic errors.

od, Em/GeV 7? valu_e Error AR
| 22.00 4.11 0.13
2 25.01 4.24 0.29
3 27.66 3.85 0.48
4 29.93 3.55 0.40
N 30.38 3.85 0.19
6 31.29 3.83 0.28
7 33.89 4.16 0.10
8 34.50 3.93 0.20
9 35.01 3.93 0.10
10 35.45 3.93 0.18
11 36.38 3.7 0.21
Fitting value R AR

x* method 3.97475 0.1079

Matrix method 3.97464 0.1079

© Hatio R /R 100003

We fit the average R value from above experiment

values by two methods, the concrete expressions read:

o Ry - RY(f- D

Xf=,__/

- (R, ' &
X = SR, - R)(V.) (R, -R),

exp
i

where o, is the overall error of normalization factor f,

which equals to 2.4 % . In the last equation above, ma-
trix V,_ has the similar form as V in Eq.(3), but with

the following substitute

o, = AR,,,, and x, = R .

Fig.1 shows the fitting result. The last row of Table 1
gives the ratio of two fitted R values. The almost-one ra-

tio value indicates the equivalence clearly.
5.0

45

4.0{ } ] 1 *ll

35t

30!

25t

2.0

22 24 26 28 30 32 34 36
E.n/GeV

Fig.1. 'The R value, error bars include the statis-

tical and point-to-point systematic errors. The solid

line represents the hest fitted R value, data points
taken from Ref. 4],

4 Summary

Two y* forms have been constructed to handle corre-
lated data fitting. The equivalence of these two forms has
been proved strictly by matrix calculation, and tested
quantitatively by a typical simplified R value measurement
experiment .

However Eq. (9) shows the existence of a bias for
two X2 forms. and the deviation from the weighted average
‘x may be considerably obvious, if the fitted points are too
many, or the error normalization factor is rather large.
This kind of bias often produces unexpected results and
must be avoided in actual experiment*” . Therefore it is
essential 1o develop a Xz form which could deal with cor-
related data fitting without bias. We will discuss the issue

: -10]
in another paper

Thanks should be given to Prof. C .7 . Yuan. who
recommend the useful reference paper on correlation treat-

ment , which becomes the start point of the study of this pa-

per .
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Some necessary matrix formulae are collected in this appendix, as to the knowledge of matrix, see Ref.[11.

For a square matrix A , its element is denoted as A, and determinant as D, = | A | . The inverse matrix of A, or A", can be calculat
ed by
o1 A’
A = D (A1)

where A” is the adjoint matrix of A, whose element is denoted as A, , which is also the cofactor corresponding 1o A, . One useful formula in-

volving A, and A is

\ Al -
NaA;

sl

rs

According to matrix properties, it can be shown that

ay +38 a; +48 a, +8
a, +8 a, +0 8, + 0,
la, +8 ay, +3d a,, + 9 &,7.
Let @ =1, then
a, +1 an+1 -
%‘\"‘A _ ay + 1 ayn + 1
lod i i
=1 g=1
a, +1 a, +1
With mathematical induction, the following equation is proved”
’ xr, +8 ab, +96 a b, +6
b+ 8 x, + 8 a,b, + 4 7 "ab + 8
Al
\={1+\ B
~x - ab,
} ab, +86 ab:+86 - x +8

= 8,Dy, 0r D AL = 8,D,.

i=1

a;2 a,
ay, A 9 '," " .
+4- L EA,,
T

ay, 8y,
a,, + lj a, ap Ay
a;, + 1 Lay  ap ctoag, (A.4)
a, + 1! a, G, a., \
"y o b, - ab "
YO a,0; i) } . _
< (x - 06,(%, - ab) [ llJ] (% - ab; )] . (A.5)

Therefore, for some special matrices, such as the matrix given in Eq. (A.5), the right side of Eq. (A.4) can be calculated explicitly. No-

tice the Eq. (A.1), the inverse of matrix could bhe handled on some extent. And this is the mathematical basis of equivalence proof. For the

Encﬂnmlm@ given in Eq. (3), there are following formulae,

n xf n
”'={‘+°f'l3?}'[ ]
= O el
"y oy "y Az - xx "
L}_IV:’ :{L—;«}a,-}_’l‘__‘_z‘j;r‘_’}. HUZ. R (A,7)
YT T .1 jn 0, =0

1) The equation has been proved completely by X.H. Mo,
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Ty

D, ‘77/«"21( . ?
=T - T l_[a: ’
Oy Pwl

or

12
0%y

=D, - 4
= -

{1
e
In fact, the determinant | V | is just a special form of that given in Eq. (A.5).
Ay ERXBENE

) > 1
BEmE' kk4&E
VCHEBEBRE MR L5 100039)
20 ERFRFERY L AL 100080)

(A.8)
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