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Single Particle Schridinger Fluid and Moments
of Inertia of Deformed Nuclei
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Abstract We have applied the theory of the single-particle Schrodinger fluid to the nuclear collective
motion of axially deformed nuclei. A counter example of an arbitrary number of independent nucleons in
the anisolropic harmonic oscillator potential at the equilibrium deformation has been also given. Moreover,
the ground states of the doubly even nuclei in the s-d shell * Ne, * Mg, %3, S and * Ar are construct-
ed by filling the single-particle states corresponding to the possible values of the number of quanta of exci-
tations n, . n,, and n,. Accordingly, the cranking-model, the rigid-body model and the equilibrium-
model moments of inertia of these nuclei are calculated as functions of the oscillator parameters hw, , hw,
and kw, which are given in terms of the non deformed value hwy , depending on the mass number 4, the
number of neutrons N, the number of protons Z, and the deformation parameter 8. The calculated val-
ues of the cranking-model moments of inertia of these nuclei are in good agreement with the corresponding
experimental values and show that the considered axially deformed nuclei may have oblate as well as pro-
late shapes and that the nucleus ** Mg is the only one which is highly deformed. The rigid-body model and
the equilibrium-model moments of inertia of the two nuclei * Ne and ** Mg are also in good agreement with

the corresponding experimental values.
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1 Introduction

It is well known that the shell model explains many nuclear properties, but fails to account the
large nuclear quadrupole moments and spheroidal shapes which many nuclei posses. It is also clear
that such effects cannot be obtained from any model which considers the pairwise filling of the indi-
vidual orbits of sphenical potential 10 be a good approximation to nuclear structure. Such large effects
can only arise from coordinates motion of many nucleons. We may characterize such motion by as-
suming that the particle motion and the surface motion are couples.

Because the surface is distorted at some moment, the potential felt by a particle is not spheri-
cally symmetric, the particles will move in orbits appropriate to an aspherical shell-model potential .
To express the particle-surface coupling mathematically, it is necessary to introduce some collective
variables to describe the cooperative modes of motion. The simpler model has sometimes been called
the collective model, and the distorted shell model the unified model .

The nuclear collective rotation'"

is a topic of the nuclear structure theory some fifty years old
which has grown steadily both in the sophistication of its theory and in the range of data to which it

relates. The most central parameter of collective rotation is the moment of inertia of deformed
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nuclei’ * . Consequently, the investigation of the nuclear moments of inertia is a sensitive check
for the validity of the nuclear structure theories.

The quantum fluid® is considered to be completely transparent internally with respect to motion
of the constituent particles, and to receive disturbances solely by way of surface deformations. lts
near incompressibility comes about, not by particle to particle push, as in an ordinary liquid, but
by more subtle means. It is capable of collective oscillations, but it is the wall which organizes these
disturbances , not nucleon to nucleon interactions. Oscillations experience a damping, but the mech-
anism of the damping is unlike that encountered in ordinary liquids. The rotational properties of the
quantum fluid are quite different from those of ordinary fluids.

Moreover, the study of the velocity fields for the rotational motion led to the formulation of the
so-called the Schroedinger fluid' "~ . Since the Schridinger fluid theory is at present an independent
particle model, the cranking mode! approximation for the velocity fields and the moments of inertia
play the dominant role in this theory.

In the present paper we have applied the theory of the single particle Schridinger fluid to the
nuclear collective motion and to the calculations of the nuclear moments of inertia. Also, an example
was given for an arbitrary number of independent particles in the anisotropic harmonic oscillator po-
tential at the equilibrium deformation. Moreover, the moments of inertia of the doubly even axially
deformed nuclei in the s-d shell: *N, *Mg, *Si, *S and * Ar are calculated according to the
concepts of the single particle Schrédinger fluid for both of the cranking model and the rigid body
madel. The equilibrium moments of inertia of these nuclei are also calculated .

2 The Schridinger Fluid

The polar form of the time-dependent K"-single particle wave function is given by Ref.[8],

Y(r.a(0),0 = &,(r.a()exp - i 15,(r.al0) -

s opt

%Joex(a(t')dt'}. (2.1)
where o represents some time-dependent collective parameters, S is a real function and ¢ is a posi-
tive real function. In the case of rotation, the parameter o becomes the angle of rotation, 4. The
single-particle Hamiltonian H is a-dependent through its potential and the time-dependent

Schrédinger equation
3
H(r,p,a(t)) W, (r,a(t),t) = ik EZW“'(”"“)") (2.2)

can be separated into real and imaginary pants, by using Eq.(2.1), and as a result two equations
are obtained. The first is the continuity equation

d
7 pv-uv.vp:_g‘?, (2.3)
where the density p = @ and the irrotational velocity field v is defined by
—————— v = - VS. (24)
ih .
S (¥, (2.5
The second equation is
(H+ Vy,)8 = e, (2.6)
which is a modified Schrodinger equation through the modified dynamical potential
_ as 1 1)
Vo == M( 5 - 2v7). (2.7)

In addition to the irrotational velocity field v, which has been result from the fluid dynamical
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equation, other velocity fields which satisfy the continuity equation of the Schridinger equation oc-
cur. Among these velocity fields are the incompressible velocity field, the regular velocity field, the
geometric velocily field and the rigid body velocity field. For rotations, the rigid body velocity field
V., is defined by

Vig = O xr. (28)

It is seen that this velocity field is incompressible, regular and also of a geometric type.

N N da Cpe .
In the adiabatic approximation where, = —=0, the collective kinetic energy of a nucleon in the

)
nucleus is given by Ref.[81, t
T, = %—MijvT - (2 x r)dr, (2.9)
and the collective kinetic energy T of the nucleus is given by
T = %MJﬂ‘,orvT < (2 x r)dr, (2.10)
where p; is the total density distribution of the nucleus and v is the total velocity field,
KE PV
vy = K;,:wpx : (2.11)

3 Single Nucleon in the Harmonic Oscillator Potential

The single particle wave functions for a nucleon in the average harmonic oscillator potential of
the nucleus are given in the form of products of the three one-dimensional oscillator functions given,

=U",(E)U"v(’7)U",(C)‘ (3.1)
-3
{znn, !«/A;w } exp(— %fz)ﬂnx(é). (3.2)
In Eq. (3.2) H,,’(E) is the Hermite poly-
7 and § are defined by
£ = th'x.etc. (3.3)

If the z-axis is an axis of symmetry, so that w, = w, ,the intrinsic energy of the single particle

state is given by
€4 n.n = hw,(n, + n, +1) + hw,(n: + %) (3.4)

In the adiabatic approximation the K™-single particle wave function is approximated by a sum
of two functions one of which is real and the other is imaginary. The first function, the quasi-static
wave function, which is the real part of the wave function satisfies the quasi-static Schridinger wave
equation and the second function, the imaginary part, is the first-order time-dependent perturbation
correction 1o the wave function and is given for rotation about the z-axis by Ref.[8],

px = 02 b —-7<J|L‘ K>U .
k& -

(3.5)
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where L, is the z- component of the single-particle orbital angular momentum. We can calculate the

cranking correction to the wave function explicitly, obtaining

.'U-"_:- .'-_r""".]."z"" = U"‘(E)#""‘:()”z) T E_O;—UM X

w,w,

{a Jan U, U, ., + %«/n,(n, + l)U,,v_lU,,x,l +
%./(n, + DU, U, +0/(n + D + DU, ., U"‘,]}. (3.6)

The functions with subscripts n,, n,, and n, are of arguments £, 7 and {, respectively, and

w, — w,

= - (3.7)
w, + w,
is a measure of the deformation of the potential .
We introduce one single parameter of deformation & defined by Ref.[9],
wz, = w?,(l#»g'j@): u)f, (38)
wl = w3(1-4—8). (3.9
3
The condition of constant volume of the uncleus leads to
w,w,w, = const. (3.10)

Keeping this condition in the general case together with Eqs. (3.8) and (3.9), w, has to

depend on & in the following wayt‘gr ,

4 . 16,4} "
wo = w0(8) = wg(l—?a —ﬁ(?a) . (311)
where wy is the value of wo(8) for 8 =0. The value of the oscillator parameter hwy for nuclei with

mass number A, number of neutrons N and number of protons Z is given by Ref. [10],

hw) = 38.647" —127.04°" + 14.754 (N - Z). (3.12)
Another choice of the deformation parameter is defined as follows™" ;
3 /5
8 = A ‘G,gzo.%,@. (3.13)

The parameter 3 is allowed to vary in the range -0.50< 8<0.50.
4 Cranking Model and Rigid Body Moments of Inertia

It is well known that the cranking model moment of inertia is defined by Ref.[11],
] = 2Mh2 \‘ ‘<j|Lx i>|2
" /‘T/_:t &~ &

We now examine the cranking model moment of inertia in terms of the velocity fields. Bohr and

(4.1)

Mottelson'"! show that for the harmonic oscillator case at the equilibrium deformation, where
A

d
‘Ef{(E"‘"’"‘)‘ = (4.2)
and A is the mass number, the cranking model moment of inertia is identically equal to the rigid
body moment of inertia,

A
T = Ty = DM+ ah). (4.3)
i=1

We note that the cranking model moment of inertia .7, and the rigid body moment of inertia .7,
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are equal only when the harmonic oscillator is at the equilibrium deformation. At other deforma-
tions, they can, and do, deviate substantially from one another®: .
The following expressions for the cranking model moment of inertia .7, and the rigid body mo-

ment of inertia .7, can be easily obtained®,

rig

1
‘,_E_L_(l“’)’ 2 LN
A e faed l CAURORS- (4.4)
1
- _ E ;(1 + J)T _
ZB_CU(2,6+2G [ - o [(1+{])+0'(1 q)]q (45)
where q is the anisotropy of the configuration which is defined by
S 5]
g == TC (4.6)
M+ )
RV BLE)
and E is the total single particle energy,
E::[Aw,(n,+n)+1)+hw‘(n,+%~)]. (4.7)

Analyzing the experimental data conceming the ground states of the nuclei * Ne, * Mg, *Si,
S, and ™ Ar one can easily fill the occupied orbits by neutrons and protons and as a consequence,
Eqs. (4.6) and (4.7) can be easily calculated for these nuclei.

5 Results and Conclusions

In Table 1 we present the calculated values of the moments of inertia of some doubly even de-
formed nuclei in the s-d shell: *Ne, *Mg, *Si, S and * Ar according to the cranking model,
.+ and the rigid body model, .7, , Eqs. (4.4) and (4.5), together with the values of the defor-
mation parameter 3 and the oscillator parameter kw; . In Table 1, also, we present the experimental
values of the moments of inertia .7, of these nuclei, obtained from the low-lying rotational spectra of
these nuclei "

Table 1. Moments of inertia of the unclei ® Ne, *Mg, *Si, S and * Ar.

Nucleus 8 hawp/MeV ;7:/ke\" 2_";;/1@\' %/ke\rf 121
~”“’N§ 0.22 11.88 276.04 305.40 279.90
P Ne -0.24 11.88 281.30 328.21
H Mg 0.39 11.55 237.58 213.22 237.90
¥ Mg -0.44 11.55 232.29 244,43
Esj 0.26 11.22 321.36 192.41 324,60
B -0.29 11.22 320.83 212.26
g 0.27 10.91 358.47 162.02 371.72
28 -0.32 10.91 365.38 179.23
*® Ar 0.27 10.62 372.91 138.96 374.55
% Ar -0.32 10.62 370.22 152.78

In Table 2 we present the calculated values of the equilibrium moments of inertia. Ty » for the

deformed doubly even nuclei in the s-d shell: ® Ne, * Mg, *Si, S and * Ar together with the val-
ues of the deformation parameter, 8, at which the cranking model and the rigid body model mo-
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ments of inertia are equal, and the values of the oscillator parameter kw, .

Table 2. Equilibrium moments of inertia of * Ne, *Mg, *Si, S, and *Ar.

42 5

Nueleus 3 hwh/MeV e fkeV e keV!1?]
#Ne 0.24 11.88 5.6 219.90
2Mg 0.36 11.55 212.80 237.90
g 0.17 11.22 193.60 324 .60
fe 0.14 10.91 163,30 37172
*®Ar 0.11 10.62 140. 10 374.55

It is seen from Table 1 that the calculated values of the moments of inertia of the considered
nuclei according to the cranking model by using the concepts of the single-particle Schridinger fluid
are in good agreement with the corresponding experimental values. It is seen, also, from Table 1
that the nuclei ® Ne, *Si, S and * Ar have nearly equal values of the deformation parameter 0 .22
<f<0.27 (or -0.32<8< -0.24). Table 1 shows, also that the calculated values of the mo-
ments of inertia according to the rigid body model for the two nuclei * Ne and Mg are in good
agreement with the corresponding experimental values while the calculated values for the three nuclei
®Si, *S and * Ar are not in agreement with the corresponding experimental values. Moreover, it is
seen from Table 1 that, ‘according to the calculations, the considered deformed nuclei may have ob-
late as well as prolate deformations. The analysis of the quadrupole moments of the considered nuclei
show that, among all the considered nuclei, the nucleus * Si may only have an oblate shape while
the others have prolate deformations. Furthermore, according to the calculations the nucleus * Mg is
the only one which is highly deformed. It may be more reasonable to assume that this nucleus has a
triaxial shape and not an axial shape.

It is seen from Table 2 that the values of the equilibrium moments of inertia of the two nuclei
®Ne and * Mg are in good agreement with the corresponding experimental values while the equilibni-
um moments of inertia of the other three nuclei are not in good agreement with the corresponding ex-
perimental values. Tt is not expected to obtain good results for the equilibrium moments of inertia
with such a simple model since there are many effects which must be taken into consideration.
Among these are:

(i) The moments of inertia of deformed nuclei can be measured from the level structure of rota-
tional bands. Calculations based on the pure single-particle model deviate from the experimental val-
ues. If pairing is included, theory and experiment are in much better agreement.

(ii) Nuclei whose mass numbers do not deviate very much from the closed shell configuration
stay, at least in their ground state, spherically symmetric. Filling more nucleons into the shell, just
as the case for the two nuclei ® Si and S, one enters a region in which nuclei undergo rapid chang-
es in deformation, reaching its maximum value in the middle of the shell.

(ii1) In the neighbourhood of closed shell even nuclei, a low-lying level with angular momen-
tum 2 and positive parity is found. These levels can be interpreted neither as rotational nor as single-
particle excitations. In fact, they are vibrational in character, having a strong interplay with pairing
correlations .

To understand all these phenomena we have to take into account the correlations due to the
short-range part of the nucleon-nucleon interaction .

Results for the minimum energy Hartree-Fock solution'" showed that the two nuclei *Si and
S exhibit ellipsoidal minima, i.e. these solutions do not possess axial symmetry. The main fea-
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tures of these results is the large gap which appears in the single-particle energies at the closing of a
subshell . the gap is reduced by the spin-orbit splitting between the ld% and 1d2 subshells, so that

towards the end of the sd-shell it has considerably diminished.

The author would like to thank the refree for his valuable comments and directions .
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