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Abstract A general formalism is given for the collective motion in a system with general multipolar-
deformations, which is treated as vibrations in body-fixed frame and rotation of whole system about
the axes of Lab-system, as well as the .ooupling between vibrations and rotation. 18 various body-fixed
frames are defined for octupole deformed system, which shows they can be put into 9 various classifies
and the determinants of metric matrix in the body-fixed frames defined by the variables @y, a3 .

ayp. by and ax, ay . biy. by are 9a% and 96% . which are the simplest.
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1 Introduction

It is well known that, in spite of the fact that the atomic nuclei are not rigid bodies, the concept
of an intrinsic or ‘body-fixed’ frame of reference is useful in the description of deformed nuclei. In
the case of quadruple deformation the intrinsic frame of reference is linked to the principal axes of the
nuclear surface. The quadruple shapes are fully described in terms of two independent intrinsic com-
ponents of the corresponding quadruple tensor, which can be parameterized by means of the two Bo-
hr’s deformation parameters 3 and 7. The famous Bohr Hamiltonian had been derived with a simple
quantized procedure'’- . When some other multipolaritics arc involved, one has additional deforma-
tion parameters, which are connected with the intrinsic components of the corresponding deforma-
tion tensors. The question arises of how to transform Bohr Hamiltonian in the laboratory system into
body-fixed frame so as to derive the quantized Hamiltonian and study the collective motion of the sys-
tem with multipole deformations. In recent years, the collective spectra of pure octupole deformed
system have been paid to attention. The collective bands of actupole deformation have become one of
the most heating frontier topic (Refs. [2,3] for several examples). The observation of the Al =4

Received 3 Januay 2000, Revised 25 April 2000
* Supported by National Natural Science Foundation of China (19677102, 19775044, 19991480), Doctoral Unit Re-
search Foundation of The State Education Committee (97035807), Beijing Electron-Positron Collision of National Laboratory,
Center of Theoretical Nuclear Physics of L.anzhou Heavy lon Accelerator National Laboratory and Education Committee Foun-
dation of Anhui Province (98]JL014)
1) Mailing Address: Department of Physics, Anhui University, Hefei 230039, China
780-786



F8H BEEE: SRUERENRIEKET 781

staggering of superdeformation bands in some nuclei’'> has aroused great enthusiasm for study of
hexadecapole deformation!®”’ . So, it is necessary to generalize the quadruple deformed theory to the
general multipolarities deformed theories. In the following, we first give out a general formalism of
the collective motion in system with general multipolar-deformations. Then, we apply the general
formalism to octupole-deformed system and give out 18 various definitions of body-fixed frames so as
to find the simplest body-fixed frame of octupole deformed system.

2 General Formalism of Collective Motion in System with General Multipolar-
Deformations

For a system with general multipolar-deformations, its surface, in polar coordinates, can be ex-
pressed in terms of the nuclear radius as

R(2) = Ro[1+ Na,, Y, (D], (1)
where R|, is the radius of the nucleus in its sphericalimequilibrium shape and a,, are the collective co-
ordinates that describe deformations of the nuclear surface. We use for the Y,,, the spherical har-
monics satisfying the Condon and Shortley convention, i.e., Y, -, =(~)"Y,, . As the radius
has to be real, it follows that a; _,, = (~)"a,,.

It is assumed that these variables change slowly with time, and therefore it is usual to express
their kinetic energy as a quadratic function of the velocities as

T=%;B,)Zzlm 2, (2)
where ay, is the time derivative of a;, . It is well known that the coefficients aj,, written in lab-sys-
tem and those written in the intrinsic system (that we will denote by 8, to avoid confusions) are re-
lated by

Ui = 3 Dl (8,) B » (3)

where 0,=(8,, 6,, 0;) are three Euler hng%&_ As usual the DY, (0,) functions, which are relat-
ed to the matrix element of the rotation operator, are defined by
D (8:) = (m | e0he 000y | ") (4)
where J;, J,, J; are angular momentum along the coordinate axes in lab-system.
In order to evaluate the kinetic energy, the time derivative of a,,, must be written down explic-

itly:
tim = 3 [ Do (0B + Dl (8 Bi 1 . (s)
The time derivative of the D¢, (6’:) functions can be expressed as '*
D’,,,,,,‘(B,-)=—iZ‘:Df,,,,(0,-)<lklco-Jllm'>, (6)
where
W) = é,sin 6; ~ ézsin 8, c0s 85,
w; = éloos 0; + ézsin 6,sin 65, (M

w3 = 63+é2C0601y
are the angular velocities around the axes in the body-fixed frame. Now the kinetic energy can be ex-
pressed as
T=Ta+ Tox t Toopiings (8)
where the vibrational energy is represented
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=3 2B b2 9)
while the rotational part is

with the inertia tensor defined as
Fy =g DB U L1 B (11)

The coupling between the internal and rotational degrees of freedom maintains a complicated struc-
ture, i.e.,

Touping = D @ik » (12)
where the &, are given by ‘
g, = -Im DB (lm” | ], | Im)B,. B0 . (13)

With above formalism, the collective motlon in system with general multipolar-deformations can be
expressed into three parts: vibrations in body-fixed frame and rotation of whole system about the ax-
cs of lab-system, as well as the coupling between vibrations and rotation. Here, the internal vari-
ables 83, are plural. For simplicity, a set of real variables a,,, and b,, is used to cover for all the
ap, —iby,
V2

V—=V(a,,, b, ), the colle;::tive Hamiltonian of the multipolarly deformed system has been trans-

variables 8, with the relations 8y = a5, B = . When we represent potential encrgy as

formed into body-fixed frame. Formulae (8)—(13) have given a general formalism of describing
collective motion of multipolarly deformed system. It can be used to describe not only pure single
multipolarly deformed system, but also the multiple multipolarly deformed system which may involve
both quadruple and octupole deformations and so on at the same time.

However, the a,, and 4,, are not independent one other. Three of them have already been re-
placed by the three Euler angles (8;). Then, how to choose the deformation parameters is the key
to define the most proper body-fixed frame. To a pure quadruple deformed system, when a,, and
ay; are chosen to define the body-fixed frame of quadruple deformation, the T uplinge disappears. Bo-
hr Hamiltonian can be obtained conveniently with a simple quantized procedure. To a pure octupole
deformed system, there are 35 different ways to define the body-fixed frame. Which choice of pa-
rameter makes the definition of body-fixed frame is the most convenient? In order to answer this
question; let’s analyze the body-fixed frame in each choice of parameters.

3 Body-Fixed Frame of Octupole Deformed System

Considering the a3 is a symmetrical parameter of octupole deformation, it should be involved in
body-fixed frame of octupole deformation. Then, there are 20 various ways for us to choose three
parameters from the rest six parameters (a3, , a3, a3, b3y, b3, b33). In the following, we dis-
cuss every choice of parameters and definition of body-fixed frame.

(1) The a3, a3 » a3, b3 body-fixed frame

The kinetic energy of octupole deformed system

18,3 wiw; F; s (14)

T3:%33([1%4—&%1+d§2+i)§1)+332wi'¢i+ 2 ~

here

k1 =V6(anby — aynby) +4/ %(032531 —apby) ,
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) ) 3 ) )
K =V6(ayazn - ayay) t '2‘(032031 —axpay) ,
k3 = ayby —ay by,
S = 6aj + %a§1 +2V 15ayay +4ah + 177’)31 )
Jn = 6ajy + _12;/(1%1 -2+ 15ayas + 4ak + %bizil )
F3 = af) +4da} + b5,
$12 == 6ay by,
/5
i3 =V6ayay +3 5 a4na.
-J6 5
I =v6ayby -3 > apbsy .
As for the kinetic energy can be written as
Ty = 5B 26, (044, (16)
. . . . el
where ¢; = (ay, a3, ap, by, w1, w3, wy) ,the metric matrix G, have been obtained as fol-
lows
. _{I K
6= (z 7)
here, I is identity matrix of 4 X4, J = (4;), K equals to
. o \.6 b S \E g 0 i
0 —+ ba 0 "z\ %032 = (!) 31
K = =z '
; ) [
N 7 b3 N 7 0
[ = s
W6asz + \ -hT@ 32 0 asn |
The determinant of metric matrix is calculated as
g =det G = 945. (19)

With the same procedure as above, the kinetic energy of the collective motion, metric matrix
and its determinant can also be obtained in the rest of body-fixed frames of octupole deformed sys-

tem. All of determinants are listed in the following.
(2) The a3, a3, b3y, by, body-fixed frame
The determinant of metric matrix
g = det G = 9%,.
(3) The a3y, a3, az, b3 body-fixed frame
The determinant of metric matrix
g = detG = % aji(a; + 63,)%.
(4) The A3zpy A3 b31 y b32 body-flxed frame
The determinant of metric matrix
g = detG = % b%l(agz + b%z )2.

(5) The aszy, as, as, bs; body-fixed frame
The determinant of metric matrix

(20)

(21)

(22)



784 mEEwHE S Y #E (HEP & NP) 24k

g = det G = (12a% — 5a%)%a%. (23)
(6) The asp, ass, bay, bay body-fixed frame
The determinant of metric matrix
g = det G = (12a%, - 5a%)%63%;. (24)
(7) The Qys A3 A33 b32 bOdy-le&i frame
The determinant of metric matrix
g = det G = 5 (- 12a} + Sad + 56%) aks. (25)
(8) The aszyy 432 b32 ’ b33 body—flxed frame
The determinant of metric matrix
g = det G = (- 12aky + Sak + 56%)*6};. (26)
(9) The asy, as, azs» b3z body-fixed frame
The determinant of metric matrix
g = det G = (- 5a} +3ak + 3637} 27)
(10) The a3y, a3z, b3, b3z body-fixed frame
The determinant of metric matrix
g = det G = +(~ 5B} +3ak + 36526} (28)
(11) The a9, a3 » asz, b3 body-fixed frame
The determinant of metric matrix
=det G = %(50%1 - 3(1%3 + Sbgn )2a§3. (29)
(12) The a3, a3, b3 b33 body-fixed frame
The determinant of metric matrix
g = det G = 5 (Sab - 3b% + 5b3)? 0. (30)
(13) The a3, a3z, b3, b3 body-fixed frame
The determinant of metric matrix
g =det G = 175(6030‘133531 +3akbyy + b3 by — 263,)° (31)
(14) The a3, a3, b3, b33 body-fixed frame
The determinant of metric matrix
g = det G = l4§(6a30a31 ()33 - 3[)53 b32 - a%l b32 + 21)%2 )2 (32)

(15) The a3, a3 » a3z, b3 body-fixed frame
The determinant of metric matrix
g =det G =
942, (1543 a% - 6 vV 15aya + 9als + 4 V' 15a3 a3 b% — 12a%,6%, + 4ay,). (33)
(16) The asp, b3 » b3ss b33 body-fixed frame
The determinant of metric matrix
g=det G =
9a2, (1563, b3 + 6 v/ 1563, b3; + 953 — 4 vV 156365, b33 — 1265, 63; + 4b%,).  (34)
(17) The a3, as, azs, by body-fixed frame
The determinant of metric matrix

g =det G =
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%(48(1%0032 - 16 v 15(130&%2 + 20(122 - 144“%0(1%2(1_233 + 48 v 15(130(2%2(1%3 -

60aad; + 108a%ats — 36 vV 15ayapnal; + 45a%ads + 8V 15aya, b3 -
20a%, 6% -12 V' 15ayanal, 63 + 30ahak:03 + 54k b)) . (35)
(18) The a3y, a3+ a3, b3z body-fixed frame
‘I'he determinant of metric matrix
g =det G =
%(48a§0a§2 +16 v 15aya}, + 20a$, — 144adyal, b3 — 48 V' 15ayal bl

60a3,b3; + 108a%bis + 36 vV 15ayaxn bl + 45a%,6% — 8 vV 15axaha}, -
20a}ad) + 12 V' 15ay a5 ad 0% + 304} a3 6% + Sakady) . (36)
For the body-fixed frame defined by the variables a3y, a3 a3 a3 0or azg, azy, b3, b3z, the
determinant of metric matrix in body-fixed frame is equal to naught. So these two definitions of the

body-fixed frame are not proper. In Refs. [9—11], the body-fixed frame was defined by setting
b3y = b3 = by; =0 and keeping a3y, a3, a3 and a3 is not correct.

4 Conclusions

From the above discussions, we can see, with the general formalism expressed in formulae
(8)—(13), the body-fixed frames of octupole deformed system can be defined conveniently. 18 var-
ious body-fixed frames of octupole deformed system can be parted into 9 various classes. The deter-
minants of metric matrices in body-fixed frame defined by the variables a3, a3, asz;, b3 and ay,
ayn, by, by are the simplest, so this definition of the two intrinsic frames maybe the most conve-
nient, where the inverse of metric matrix can be calculated easily, the quantized Hamiltonian can be
derived out.

The authors are grateful to Professor ZHAQO EnGuang for helpful discussions.
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