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On the Intermittency and Chaos in
High Energy Collisions

Fu Jinghua Liu Lianshou Wu Yuanfang
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Abstract It is shown that an event sample from the Monte Carlo simulation of
a random cascading @ model with fixed dynamical fiuctuation strength is
intermittent but not chaotic, while the variance of dynamical fluctuation strength
in different events will result in both the intermittency and the chaoticity behavior.
This shows that fractality and chaoticity are two connected but different features
of non-linear dynamics in high energy collisions.

Key Words chaos, entropy index, intermittency, factorial moments, @ model

For classical system, the description of non-linear behavior is well established. It has
been known by lattice calculation that the classical non-Abelian gauge theory generally
exhibits deterministic chaos and that the Lyapunov exponent can be numerically
determined”’. But for quantum system, because of the ambiguity associated with quantum
chaos in the realm of quantization, nonconservation of the number of degrees of freedom
and lack of a meaningful definition of a trajectory, there is no corresponding description
established. The study of non-linear behavior in high energy physics has, therefore, to be
started phenomenologically.

The first signal of such a behaviour came from the unexpectedly large local
fluctuations in a single event of very high multiplicity recorded by the JACEE
collaboration®. Such large fluctuations may not be simply due to statistical reason and
was taken as a signal of the existence of non-linear dynamical fluctuations. It was soon
realized that the idea can be applied to events of any multiplicity provided that a proper
average of factorial moments is performed, as done in the pioneer work of Bialas and
Peschanski. These authors have been able to show that, if the statistical fluctuations are of
Bernouli (fixed multiplicity case) or Poisson (variable multiplicity case) type, the averaged
factorial moments F, are equal to the averaged dynamical probability moments C,. The
anomalous scaling of the latter has taken the name of intermittency (or fractal). This led
to extensive experimental studies””, and the expected anomalous scaling has been observed
successfully in the experiments'™.

It should be realized, however, that the averaging procedure, apart from its clear
advantages, brings also a danger of losing some important information on the spatial
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patterns from event to event. In particular, some interesting effects, if existing only in
part of the events in high-energy collisions, may be missed. A possible example of this
kind is the quark-gluon plasma which is expected to be characterized by specific
intermittency exponents[ ! It seems therefore important and urgentm to study the
fluctuation of single-event moments C inside an event sample”. This fluctuation is
related to the chaotic behavior of the systemm. A quantity p, called entropy index can be

introduced® as an adequate parameter in measuring the chaotic behavior. The positivity of
entropy index u > 0 is proved to be a criterion for chaos®.

Thus, two kind of non-linear phenomena—fractality (intermittency) and chaoticity have
been proposed in high energy collisions. In this short note we will study the relation
between them using Monte Carlo simulation of a random cascading a model. We will
show that the anomalous scaling of the averaged probability moments (fractality or
intermittency) and that of the event-space moments of single-event ones (chaoticity) are
two connected but different features of non-linear dynamics. The system will exhibite both
the fractal and the chaos behaviour only when the dynamical fluctuation strength is not
fixed but is distributed over a certain range.

Let us first recall brefly the study of fractality (intermittency) in high energy
collisions. This study is performed through the observation of anomalous scaling of
averaged factorial moments F,, which is equal to the averaged probabilty moments C,

(p?)
F(M) = (mﬂ—Zf%«M¢ ¢y

i=1
where a phase space region A is divided into M sub-cells, p, is the probability for a
particle to fall in the ith sub-cell.
For a flat inclusive distribution the moment C% for each event is defined as

M
CO=M"" (). #))

i=1
We can now consider C not only through its average—intended to get a better estimate
of the hypothetical anomalous scaling of single-bin moments, cf. eqn. (1)—but also as a
pattern-descriptor for particle fluctuations inside bins (just one among the many that could
be devised).

C(e) may fluctuate greatly from event to event. In a sample consisting of a large
number N of events, we get a distribution of C?, denoted by P(Cy’), which is normalized
to unity. The conventionally defined factorial moments, cf eqn. (1), give only an estimate
of the mean of P(C{). By taking the normalized moments of P(C®) in event-space
defined as

¢ ={conIcey ©

1) It has been shown™ that the statistical fluctuations can be eliminated by using the factorial moments
averaged over event sample. However, the extension of this method to single-event moments is highly
non-trivial. It is easy to show that the elimination of statistical fluctuations in single event factorial moments F®
is incomplete. In order to avoid the complication caused by statistical fluctuations we will in this paper restrict
ourself to the study of probability moments C” directly.
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we have a quantification of the fluctuation of the spatial patterns, i.e. we can investigate
the full shape of the distribution and, especially, the way it changes with the resolution
6=A4/ M The value of p can be any positive real number. If CM(M) has a power law

behaviour in M, i.e.

C, (MM, @
then a new entropy index can be defined as,
d
B = VD, )

It is easy to see that finite, nonvanishing positive values of K, corresponds to wide
P(Cf)), which in turn means unpredictable spatial pattern from event to event. By
applying the measure to known classical chaotic system, it has been shown™ that M, can

be used as a measure of chaos in problems where only the spatial patterns can be
observed and the positivity of B, is a criterion for chaos.

An alternative way of calculating ,uq[g] is to express Cp) , a8

- ()’
c, = (29", ©
in which,
© _ ~© ©
P =P /(c?). Q)
With the definition
—(5® ©
Z,=(2 n0?), ®)
we can obtain
62'4
Ho= Blam ©)

in the scaling region, i.e. where Eq exhibits a linear dependence on In M. We will use
this formula in calculating the entropy indices B,

Let us turn now to the consideration of the relation between the fractality and
chaoticity in high energy collisions. Since the random cascading o-model®'? is often used
to study the dynamical fluctuations in these collisions, we will use this simple model as a
tool for our investigation.

In the random cascading o-model, the M divisions of a phase space region A are
made in steps. At the first step, it is divided into two equal parts; at the second step,
each part in the first step is further divided into two equal parts, and so on. The steps
are repeated until M= AY/ &y = 2". How particles are distributed from step-to-step
between the two parts of a given phase space cell is defined by independent random
variable w, where j, is the position of the window (1<j ,<2") and v is the number of

steps. It is given by!'":

. v—1
wv,Zj—] % (l_ar)’]:'l, "t 2

N —

=%(l + ar); W, =

where 7 is a random number distributed uniformly in the interval [~ 1,1]. « is a positive
number less than unity, which determines the region of the random variable @ and
describes the strength of dynamical fluctuations in the model. After v steps, the

probability in the mth window (m =1, ---, M) is p, = @y, @, **w, . Then according to
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eqn (1), probabilty moment Cq(") in each event of different division steps are calculated,
and the moment C,., and entropy index u . of the sample are obtained using eqn. (3)

and eqn.(9).

Our research is done in the following two steps.

(A) Fix the model parameter to a definite value, say a = 0.34, the experimental
results being around this value. The results of In C, In C., and Zq vs. In M from 6000

MC simulation events are shown in Fig.1 (a),(b),(c) respectively.
In Fig.1 (a) we see a straight line in bi-logarithm plot, which is an indication of
intermittency (or fractality). However, the behavior of In C,  vs. In M in the model, cf.

Fig.1 (b), is quite different from the expected result for chaos™. It does not show any

scaling behavior or upward bending when M goes larger, as the chaotic behaviour

requires”. The first going up of C, ., is due to an intrinsic uncertainty of the

intermittency parameters’'’!. The cascade responsible for intermittent behaviour has different
realizations in different events, and the intermittency exponents determined from different
realizations of the same random cascade are scattered around the average, i.e. the method

has a finite resolution with respect to the parameters of the random cascade. The c,,

saturates when M goes large which means that there isnot any essential fluctuation of
spatial pattern from event to event. Therefore, this kind of « model cannot reflect the
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feature of chaoticity. From the result showing in Fig.1 (c), using eqn.(9), we can get for
this case #4,~0. If we do not consider the finite resolution of the model, there isnot any

chaotic behavior.
In order to reproduce both intermittency (fractal) and chaos we take the second step.
(B) Instead of giving @ a fixed value we let it be a random variable ' having a
Gaussian distribution. The mean value and varance of the Gaussian are both chosen as
0.22. Calculating from 6306 events, the result of In Cq vs. In M are shown in Fig.2. It

can be seen from the figure that there is a very good power-law or scaling behavior,
which means that though we have changed the method of setting model parameter, the
anomalous scaling of the mean value of C' (intermittency phenomenon) survives. With
the method developed in Ref. [12] we can get the effective fluctuation strength in this
case as @ . = 0.337. This value of @ . is within the limited range available in actual
experiments. However, the behavior of In CM vs. In M in the present case is much

different from the case (A) and shows a typical behaviour of chaoticity, cf. Fig.3.
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Fig3 The In C,, vs. In M for the random cascading model with

Gaussian-distributed o. Full lines are for guiding the eye
From this result we see that a distribution of & will cause a distribution of single
event probabilty moment C[”, i.e. for an event sample we have a wide P(CP). For

increasing M, along with the expected increase of the average, ACPY) will show a rapid
broadening, i.e. a more violent fluctuation of Cq(e) (M) for different events, which will
result in a even more unpredictable spatial pattern from event to event.

Using eqn. (8) and eqn.(9), we can calculate entropy indices for this case. The result
of Eq vs. In M are shown in Fig.4(a). By performing a linear fit of Z'q vs. In M in the

range M= 8 to M= 64 (i.e. omitting the first three points), #, is obtained and plotted in

Fig.4 (b).

From these two steps of MC simulation we can see that the procedure of doing
simulation with random cascading @ model of fixed strength parameter «, as has been
widely used before, captured only one aspect of the non-linear property (intermittency) but
cannot reproduce the fluctuation of spatial patterns from event to event. It will cause the
loss of information on the spatial patterns in different events and some interesting effects,
if existing only in part of the events, may also be lost. If we want to give a more
complete description of the non-linear properties using @ model, the model parameter
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cannot be fixed.

In conclusion, the nonvanishing positive values of g, which is an indication of chaos,

correspond to wide P(Cff)), which in turn means

unpredictable spatial pattern from event to event.
Such an unpredictability of wide P(C) s
caused by different dynamical fluctuation
strength in different events, i. e by a
distribution of dynamical fluctuation strength in
an event sample. Events in one sample are all
beginning with similar initial condition. During
the collision process different event will evolve
with a  different strength of  dynamical
fluctuation and this will result in a fluctuation
of spatial pattern in the final event space.
Dynamical fluctuation strength is directly
related to the dynamical mechanism in a
particular collision. We take the distribution of
dynamical fluctuation strength, 1. e. the
distribution of model parameter «, to be a
Gaussian only because it is the most common
distribution of random variables in nature. We
have also tried a uniform distribution of « and
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non-zero positive entropy indices 4, can be obtained too. (The result is not shown here).

Revealing the distribution of dynamical fluctuation strength in different collisions will be a
very constructive work and it will certainly help us a lot in studying the mechanism of
strong interactions. How the different distributions of dynamical fluctuation strength
together with it’s mean value and width will influence the entropy index of an event
sample is also a problem worthwhile for further investigation.

As has been stressed in the introduction, this study is restricted to the probability
moments and the problem of how to eliminate statistical fluctuations in experimental data
analysis has not been discussed. To develope an effective method for eliminating the
statistical fluctuations for single-event moments is a challenge for future investigation.
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