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Cluster Monte Carlo Algorithm for
the Study of Quantum X-Y Model
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A Monte Carlo study for the one-dimensional quantum X-Y model by cluster algorithm
is presented. For chains of L = 32, 64 and 128 at 3J = 1.0-10.0 temperature region, the
dynamic properties are analyzed carefully and the corresponding thermodynamic
quantities are computed. This method many be developed to apply to the lattice fermions
systems.
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1. INTRODUCTION

The quantum X-Y model was first proposed in 1956 for the study of lattice quantum fluids [1].
Later, the model was interesting because it related to the progress, both in the experimental and
theoretical aspects, of low-dimensional magnetic systems. For the one-dimensional (1D) X-Y system,
among the more general Heisenberg ferro- and antiferromagnets, the studies have been carried out by
the Monte Carlo (M-C) simulations and analytical calculations. The results obtained by the simulations
are commonly used to develop new methods or algorithms for the study of the systems in the 2D or
higher-dimension to compare with the experimental observations, as well as to make a helpful check
for the analytical results.
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Fig. 1
The 2D induced classical spin system with the four-spin
couplings depicted by the shaded plaquettes.

Up to now a few papers were devoted to the simulations for the quantum X-Y model. Cullen and
Landau [2] in 1983 have made a systematical M-C study for the 1D X-Y model for s = 1/2 by the
Suzuki-Trotter transformation to an induced classical spin system with the small Trotter number m.
However there arise some problems in their simulations. Because many configurations are forbidden
for the induced classical system, the local M-C updating is of very low efficiency at the low
temperature region, which causes a different results to the exact calculations. Some other researchers
[5,6] concerned on the 2D X-Y model to have a deep insight on its important characters, which was
encouraged by the corresponding study for the classical (planar) X-Y model. The latter had the
remarkable theory of Kosterlitz and Thouless (KT) [4], which provided a clear physical picture and
correctly predicted a KT transition at kT,/J = 0.898. In this paper a loop-cluster M-C algorithm is
presented, which avoids the appearance of the forbidden configurations. Then it is applied to the study
both at the low temperature region and with the large m. The calculations show evidences that it
overcomes the slowing down effects, caused by other local updating methods. This advantage was also
shown in our early works for the study of the Heisenberg ferro- and antiferromagnets [7].

The system defined on a chain with the periodic boundary conditions is described by the
following Hamiltonian:

N N
H=1] 2> (SiSfu+ SISh)=1J 3 H,, )

im1 i=q1

with positive constant J = 1.0. Where i denotes the lattice site and N the number of sites on the chain.
S; = (5%, &) is the spin operator defined on each lattice site and can be presented by the Pauli matrix,

1 1
Sl-_z-f’,s’—_z_g’. (2)

The periodic boundary condition gives Sy, = S;.
By the checkerboard decompositions, H can be decomposed into two parts, H = H, + H,;:

Hy = JEH“

i=odd 3)
Hy=] > H;,

__ imoves
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Fig. 2
Six allowed configurations for each interaction plaquette, the
spin s(x,?) is located at each corner of the plaquette.

Then, following the Suzuki-Trotter formula [2], we write the corresponding partition function of H
as

Z = Trlexp(—pH)] = HgTr[exp(—SHI)exp(—eHn)]"‘, @)

where 3 = 1/T is the inverse temperature and ¢ = (3/m determines the lattice spacing in the Euclidean
“time" direction (Trotter direction). After inserting complete sets of eigenstates | +1) and | —1) of ¢
between the factors of exp(—¢H;), we map the 1D quantum system to a 2D induced classical system
of Ising-like variables s(x,) = +1. The partition function (4) is written approximately by

zw =T > exp(—S{s(x,)D), ®)

(z,2) $Czo8)=%k1

Here S{s(x,)} denotes the four-spin interactions associated with the time-like plaquettes (shaded
plaquettes in Fig. 1), only the six configurations are allowed in Fig. 2. Their elements reduced from
the transfer matrix are given by, .

T(1)=T(2)=1
T(3) = T(4) = ch(epJ/2)
T(5) = T(6) = sh(epl/2), 6)

The algorithm constructs loops by first selecting a starting point (x,f) at random and put bond
within the shaded plaquette in the x-direction, the r-direction or the diagonal-direction
(next-nearest-neighbor) according to the normalized probabilities given in Table 1. Here P,, P,, and
P; are determined such that the detailed balance condition is satisfied,

P, = [1 + exp(—spJ/2)1/2
P, = [1 + exp(—epgJ/2)1/Lexp(ep]/2) + exp(—ep][2)]
P, = [exp(ep]/2) — 11/ exp(ep]/2) + exp(—eg]/2)]. Q)

Then a new state is obtained by flipping the two spins at the bond.
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Fig. 3
M-C results of the energy versus the 3 on the L = 64 chain,
where the line indicates the exact result [9].
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The fundamental idea of updating process is originated from the algorithm of Wolff-Swendsen-
Wang [8]. First, given any site (x,#), the plaquette configuration is described by the spin orientations
at the four corners of the plaquette and there are two plaquettes for the s(x,z). If s(x,) = 1 we select
one of the spins on the plaquette at later time slice to put a bond according the probabilities Pi;
otherwise the spin on the other plaquette at the early time slice is chosen to put a bond similarly. Once
this next point on the loop is determined, as shown above, the process is repeated until the loop is
closed, i.e., the final bond meets the first bond. Second, all the spins on the loop are flipped
collectively, {s'(x,?) = s(x,?),(x,t) e Loop}. A Monte Carlo sweep is defined by constructing the loop
and flipping all the spins on the loop collectively.

It is of convince to write the partition function in the form

Z® = > exp(—pE®™), ®)

where E{™ is the energy of the j-th state as obtained from the induced classical spin system (5) with
the Trotter number m. The m-th approximation of the energy is then gotten as

E® o __8949— a Z® = _E(l:_)_ z': Ef™exp(—FE{™) = (F™), .
where (--) means the M-C average.
9 - .
5 e 3 (BE{™). (10)

For the calculation of the specific heat C™ , one finds that

- gt %:) - FI{F= — G™) — (F™)]; (11)

a3 .
G = 2_ Fi™; (12)
i : aﬂ 1



«

Volume 19, Number 1

Table 1

as a function of the plaquette configurations.

The directions of generating a bond and the corresponding probabilities

65

Initial state ot :
Direction ‘;f gg“m‘"‘g Flipped state Probability
Label Configuration a’an

t-direction [-1,1,~1;1] P,

1 [1,1,1,1] diagonal [-1,1,1,-1] 1-P,
x-direction [-1,-1,1,1] 0
t-direction [1,-1,1,-1] P,

2 [-1,-1,-1,-1] diagonal [1,-1,-1,1] 1-P,
x-direction [1,1,-1,-1] 0
t-direction [-1,-1,-1,-1] Py

3 [1,-1,1,-1] diagonal [-1,-1,1,1] 1-P,
x-direction [-1,1,1,-1] 0
t-direction [1,1,1,1] P,

4 [-1,1,-1,1] diagonal [1,1,-1,-1] 1-2,
x-direction [1,-1,-1,1] 0
t-direction [-1,-1,1,1] P,

5 [1,-1,-1,1] diagonal [-1,-1,-1,-1] 1-P;
x-direction [-1,1,-1,1] 0
t-direction [.1,-1,-1] Py

6 [-1,1,1,-1] diagonal [1,1,1,1] 1-P,
x-direction [1,-1,1,-1] 0

The expression for the uniform and staggered susceptibilities, x, and ¥, is,

The corresponding magnetic moments for x, and x, in the j-th state are given by

i = L[5 5 e

L), = -1 [Z > (= 1)+, |

X = LU — (M@,

i

i

(13)

(14)

15)

Monte Carlo simulation is performed on the L = 32, 64 and 128 chains. The number of slices
in the #-direction, N, = 2m, is chosen such that ¢ = 8/m < 0.1, which controls the systematic error
being less than 1.0%. On the temperature region of 1.0 < 8 < 10.0, our calculations are carried out.
For the L = 32 and 64 chains, 12 points of § are taken to do the simulations. For the longest chain,
L = 128, 5 points of 8, where the peak of the specific heat is located, are taken. In the simulation, the
random configurations are always taken as initial ones followed by 10,000 sweeps for thermalization

and 40,000 sweeps for M-C average using the loop-cluster algorithm described.
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Table 2
The numerical results of autocorrelation times.
T, Tx,
T 2m

L =232 L =64 L=32 L =64
0.10 256 2.00(10) 2.18(10) 0.34(3) 0.35(3)
0.15 192 2.05(10) 1.84(09) 0.30(2) 0.29(2)
0.20 128 2.14(10) 2.14(10) 0.32(2) 0.30(2)
0.25 128 2.24(11) 1.74(09) 0.27(2) 0.32(2)
0.30 128 2.19(10) 1.62(09) 0.26(2) 0.27(2)
0.35 96 1.82(09) 1.55(08) 0.28(2) 0.32(2)
0.40 64 1.87(09) 1.62¢09) 0.25(2) 0.29(2)
0.45 64 2.01(10) 1.72(09) 0.26(2) 0.30(2)
0.50 64 2.00(10) 1.67(09) 0.27(2) 0.28(2)
0.60 64 1.62(08) 1.66(09) 0.25(2) 0.25(2)
0.80 64 1.74(09) 1.72(09) 0.24(2) 0.26(2)
1.00 64 1.57(08) 1.54(08) 0.26(2) 0.25(2)

The results of the estimations for the thermal observable show that they are almost invariant
under the condition ¢ < 0.1 with the different the L and N,. In Figs. 3-5, the results of the internal
energy, the specific heat and the uniform susceptibility are shown for the chain L = 64 respectively.
To compare with the exact results obtained by Katsura [9], we include the corresponding curves in our
figures and find that, especially on the low temperature region, they are consistent with each other.

Another interesting problem is to demonstrate the efficiency of the loop-cluster algorithm. For
the purpose we measure the autocorrelation functions Cy(#), which is defined

ngt) = {0(2,) < 0z + 2))> (16)

where O denotes the observable, the internal energy E and the staggered susceptibility x,. And then
carefully analyze the Cy(f) to obtain the integrated autocorrelation times 75 by

exp(—1/7§) = > Co(t)/Z Co(e). (17

t=| t=0

Using the data obtained and noticing that the size of the closed loop is the variable with the M-C
sweeps, we re-scale the exponential autocorrelation times 7, by

T, = 7% X size of the closed loop/(L X 2m), (18)
where 75 is the measured data for the autocorrelation times by 1-hit loop-cluster updating simulation.
Some numerical results are listed in the Table 2, which are collected to calculate the dynamical
exponent Z, defined by 7, e 1/&%. In the limit of & - 0, we find, as shown in Fig. 6,

g‘- 0'2(1)’ z_z‘. - 0.9(1\). (19)
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Fig. 4 Fig. 5
M-C results of the specific heat, where M-C results of the staggered susceptibility,
the line indicates the exact result. where the line indicates the exact result.

such that there is no indication of slowing down for m — oo which is needed for low temperatures.
Furthermore, as shown in Fig. 7, the 7, is fitted by

72,0 exp(cB]) 20)

with ¢ = 0.1(1) to show the character of 7 when the temperature is lowered. This gives the evidence
that the algorithm is still efficient at the low temperature.

To summarize, we presented a loop-cluster algorithm and performed a numerical calculations for
the quantum X-Y model. In the simulations we keep m is large enough to reduce the systematic error
and to get accurate estimations for several temperatures 1.0 < BJ < 1.0. The results for the
autocorrelation times show that the algorithm can update the induced classical spin system efficiently.
The algorithm can also be generalized to simulate the X-Y model in the higher dimensions directly.
A work for the 2D system will be published elsewhere. At last, we hope that the loop-cluster algorithm
may be play an important role in the study of the lattice fermion systems [10].
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A log-log plot of the autocorrelation time A plot of 7, versus 8 on the condition

7, Versus the 1/e. of ¢ = 0.078 being a constant.
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