[1] |
SHENG Zong-Qiang
, SHU Liang-Ping
, FAN Guang-Wei
, MENG Ying
, QIAN Jian-Fa
. Investigation of proton radioactivity with the effective liquid drop model. Chinese Physics C,
2015, 39(2): 024102.
doi: 10.1088/1674-1137/39/2/024102
|
[2] |
LIU Zi-Yu
, XIANG Qian-Lan
, ZHANG Xiao-An
, XIAO Guo-Qing
. Topological structure of the solitons solution in SU(3) Dunne-Jackiw-Pi-Trugenberger model. Chinese Physics C,
2010, 34(3): 330-333.
doi: 10.1088/1674-1137/34/3/005
|
[3] |
QIN Meng
, LI Yan-Biao
. Effect of spin-orbit interaction on entanglement of two-qutrit Heisenberg XYZ systems in an inhomogeneous magnetic field. Chinese Physics C,
2010, 34(4): 448-451.
doi: 10.1088/1674-1137/34/4/005
|
[4] |
HU Ming-Liang
, TIAN Dong-Ping
. Bipartite entanglement in spin-1/2 Heisenberg model. Chinese Physics C,
2008, 32(4): 303-307.
doi: 10.1088/1674-1137/32/4/013
|
[5] |
ZHANG ZhongCan
, FANG ZhenYun
, HU ChenGuO
, SUN ShiJun
. Berry Geometric Phase and Quantum Transition. Chinese Physics C,
2000, 24(12): 1106-1114. |
[6] |
Zhang Zhongcan
, Fang Zhenyun
, Hu Chenguo
, Sun Shijun
. The Extention of Berry's Theory on Geometric Phase. Chinese Physics C,
1999, 23(10): 980-991. |
[7] |
Zhao Peiying
, Wu Jimin
. Phase Structure of U(l) Lattice Gauge Theory by Variational Study with Independent Plaquette Effective Action. Chinese Physics C,
1996, 20(S1): 47-54. |
[8] |
Shen Yuelin
, Ni Guangjiong
. Berry's Connection and Wu-Yang's Monopole Potential. Chinese Physics C,
1995, 19(6): 500-507. |
[9] |
Deng Shenghua
, Wang Enke
, Li Jiarong
. Two-Loop Effective Potential of the Non-topological Soliton Model at Finite Temperature. Chinese Physics C,
1995, 19(S3): 289-304. |
[10] |
Meng Jie
, Zeng Jinyan
, Zhao Enguang
. Berry Phase and Pair Transfer Matrix Element in Rotating Nuclei. Chinese Physics C,
1994, 18(3): 249-255. |
[11] |
Gao Xiaochun
, Qian Tiezheng
. The Removability of the Topological Term in the CP1 model and ϑ-Vacuum. Chinese Physics C,
1993, 17(S4): 355-360. |
[12] |
SUN Chang-Pu
, PAN Lin
, GE Mo-Lin
. Effective topological action in Heisenberg spin model as Berry's phase. Chinese Physics C,
1992, 16(3): 202-207. |
[13] |
SUN Chang-Pu
, ZHANG Lin-Zhi
. BERRY'S PHASE FACTORS IN MOVING FRAMES OF REFERENCE AND THEIR OBSERVABLE EFFECTS. Chinese Physics C,
1990, 14(2): 136-144. |
[14] |
GAO Xiao-Chun
, XU Jing-Bo
, QIAN Tie-Zheng
, CHEN Cheng-Ming
. THE MECHANICAL BERRY PHASE AND CORRESPONDING CLASSICAL TOPOLOGICAL PHASE ANGLE. Chinese Physics C,
1990, 14(8): 704-710. |
[15] |
Sun Changpu
, Zhang Linzhi
. Berry's Phase Factor in a Moving Reference Frame and Its Observable Effects in Physics. Chinese Physics C,
1990, 14(S1): 71-81. |
[16] |
SUN Chang-Pu
. TOPOLOGICAL ACTION RELATIONG TO BERRY'S PHASE AND NON-ADIABATIC EFFECTS. Chinese Physics C,
1990, 14(8): 692-699. |
[17] |
Sun Changpu
. Topological Action Related to Berry's Phase and its Non-adiabatic Effects. Chinese Physics C,
1990, 14(S3): 265-273. |
[18] |
SUN Chang-Pu
. A CLASSICAL MODLE OF QUANTUM BERRY'S PHASE FACTOR. Chinese Physics C,
1989, 13(2): 109-115. |
[19] |
Sun Changpu
. Classical Model for Quantum Berry's Phase Factors. Chinese Physics C,
1989, 13(S1): 15-22. |
[20] |
Sun Changpu
. Quasi-Adiabatic Approximation for Slowly-Changing Quantum System and Berry's Phase Factors. Chinese Physics C,
1988, 12(S3): 251-260. |