[1] |
ZHANG Hui
, SHU Song
. Mean-field approximation for the chiral soliton in achiral phase transition. Chinese Physics C,
2015, 39(9): 094104.
doi: 10.1088/1674-1137/39/9/094104
|
[2] |
YANG Ding
, CAO Li-Gang
, MA Zhong-Yu
. Collective multipole excitations of exotic nuclei in relativistic continuum random phase approximation. Chinese Physics C,
2013, 37(12): 124102.
doi: 10.1088/1674-1137/37/12/124102
|
[3] |
CHEN Yan-Jun
. Quasielastic electron scattering in a derivative coupling model with relativistic random phase approximation. Chinese Physics C,
2013, 37(7): 074101.
doi: 10.1088/1674-1137/37/7/074101
|
[4] |
LIU Wei-Wei
, LUO Zhi-Quan
, YANG Juan
, BIAN Gang
. Quantum tunnelling of higher-dimensional Kerr-anti-de Sitter black holes beyond semi-classical approximation. Chinese Physics C,
2011, 35(1): 22-25.
doi: 10.1088/1674-1137/35/1/005
|
[5] |
ZHU Jing-Min
. Quantum phase transitions about parity breaking in matrix product systems. Chinese Physics C,
2011, 35(2): 144-148.
doi: 10.1088/1674-1137/35/2/007
|
[6] |
LI Ning
, YAO Hai-Bo
, CHEN Xi
, WU Shi-Shu
. Rigorous spectral representation of relativistic random phase approximation for finite nuclei. Chinese Physics C,
2010, 34(12): 1830-1835.
doi: 10.1088/1674-1137/34/12/008
|
[7] |
ZHANG ZhongCan
, FANG ZhenYun
, HU ChenGuO
, SUN ShiJun
. Berry Geometric Phase and Quantum Transition. Chinese Physics C,
2000, 24(12): 1106-1114. |
[8] |
Zhang Zhongcan
, Fang Zhenyun
, Hu Chenguo
, Sun Shijun
. The Extention of Berry's Theory on Geometric Phase. Chinese Physics C,
1999, 23(10): 980-991. |
[9] |
Shen Yuelin
, Ni Guangjiong
. Berry's Connection and Wu-Yang's Monopole Potential. Chinese Physics C,
1995, 19(6): 500-507. |
[10] |
SUN Chang-Pu
, PAN Lin
, GE Mo-Lin
. Effective topological action in Heisenberg spin model as Berry's phase. Chinese Physics C,
1992, 16(3): 202-207. |
[11] |
Sun Changpu
, Pang Lin
, Ge Molin
. Effective Topological Action in Heisenberg Spin Model as Berry's Phase. Chinese Physics C,
1992, 16(S1): 51-56. |
[12] |
Ren Guoxiao
. Measurement of Charge-Changing Cross Sections of 200 A GeV S and Fragments with Cu Target. Chinese Physics C,
1991, 15(S4): 323-329. |
[13] |
GAO Xiao-Chun
, XU Jing-Bo
, QIAN Tie-Zheng
, CHEN Cheng-Ming
. THE MECHANICAL BERRY PHASE AND CORRESPONDING CLASSICAL TOPOLOGICAL PHASE ANGLE. Chinese Physics C,
1990, 14(8): 704-710. |
[14] |
SUN Chang-Pu
, ZHANG Lin-Zhi
. BERRY'S PHASE FACTORS IN MOVING FRAMES OF REFERENCE AND THEIR OBSERVABLE EFFECTS. Chinese Physics C,
1990, 14(2): 136-144. |
[15] |
Sun Changpu
, Zhang Linzhi
. Berry's Phase Factor in a Moving Reference Frame and Its Observable Effects in Physics. Chinese Physics C,
1990, 14(S1): 71-81. |
[16] |
SUN Chang-Pu
. TOPOLOGICAL ACTION RELATIONG TO BERRY'S PHASE AND NON-ADIABATIC EFFECTS. Chinese Physics C,
1990, 14(8): 692-699. |
[17] |
Sun Changpu
. Topological Action Related to Berry's Phase and its Non-adiabatic Effects. Chinese Physics C,
1990, 14(S3): 265-273. |
[18] |
SUN Chang-Pu
. A CLASSICAL MODLE OF QUANTUM BERRY'S PHASE FACTOR. Chinese Physics C,
1989, 13(2): 109-115. |
[19] |
Sun Changpu
. Classical Model for Quantum Berry's Phase Factors. Chinese Physics C,
1989, 13(S1): 15-22. |
[20] |
SUN Chang-Pu
. QUASI-ADIABATIC APPROXIMATION FOR THE SLOWLY-CHANGING QUANTUM PROCCESS AND BERRY PHASE FACTOR. Chinese Physics C,
1988, 12(3): 351-357. |