×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Anatomy of the ρ resonance from lattice QCD at the physical poin

  • We propose a strategy to access the qq component of the ρ resonance in lattice QCD. Through a mixed action formalism (overlap valence on domain wall sea), the energy of the qq component is derived at difierent valence quark masses, and shows a linear dependence on mπ2. The slope is determined to be c1=0.505(3)GeV-1, from which the valence πρ sigma term is extracted to be σπρ(val)=9.82(6) MeV using the Feynman-Hellman theorem. At the physical pion mass, the mass of the qq component is interpolated to be mρ=775.9±6.0±1.8 MeV, which is close to the ρ resonance mass. We also obtain the leptonic decay constant of the qq component to be fρ-=208.5±5.5±0.9 MeV, which can be compared with the experimental value fρexp≈221 MeV through the relation fρexp=√Zρfρ±, with Zρ≈1.13 being the on-shell wavefunction renormalization of ρ owing to the ρ-π interaction. We emphasize that mρ and fρ of the qq component, which are obtained for the flrst time from QCD, can be taken as the input parameters of ρ in efiective fleld theory studies where ρ acts as a fundamental degree of freedom.
      PCAS:
  • 加载中
  • [1] R. L. Jafie, AIP Conf. Proc., 964: 1 (2007); Prog. Theor. Phys. Suppl., 168: 127 (2007) [arXiv:hep-ph/0701038]
    [2] J. R. Pelaez, Phys. Rev. Lett., 92: 102001 (2004) [arXiv:hepph/0309292]
    [3] X. Feng, K. Jansen, and D. B. Renner, Phys. Rev. D, 83:094505 (2011) [arXiv:1011.5288(hep-lat)]
    [4] C. Pelissier and A. Alexandru, Phys. Rev. D, 87: 014503 (2013) [arXiv:1211.0092 (hep-lat)]
    [5] S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D, 84:094505 (2011) [arXiv:1106.5365 (hep-lat)]
    [6] J. J. Dudek, R. G. Edwards, and C. E. Thomas (Hadron Spectrum Collaboration), Phys. Rev. D, 87: 034505 (2013); Phys. Rev. D, 90: 099902(E) (2014) [arXiv:1212.0830 (hep-ph)]
    [7] G. Bali et al (RQCD Collaboration), Phys. Rev. D, 93: 054509 (2016) [arXiv:1512.08678 (hep-lat)]
    [8] D. Guo, A. Alexandru, and R. Molina, Phys. Rev. D, 94:034501 (2016) [arXiv:1605:03993 (hep-lat)]
    [9] Z. Fu and L. Wang, Phys. Rev. D, 94: 034505 (2016) [arXiv:1608.07478 (hep-lat)]
    [10] J. Bulava, B. Fahy, B. Hrz, K. J. Juge, C. Morningstar, and C.H. Wong, Nucl. Phys. B, 910: 842 (2016) [arXiv:1604.05593 (hep-lat)]
    [11] M. Luscher, Commun. Math. Phys., 105: 153 (1986)
    [12] T. Blum et al (RBC and UKQCD Collaborations), Phys. Rev. D, 93: 074505 (2016) [arXiv:1411.7017 (hep-lat)]
    [13] M. Lujan, A. Alexandru, Y. Chen, T. Draper, W. Freeman, M. Gong, F. X. Lee, A. Li, K.-F. Liu, and N. Mathur, Phys. Rev. D, 86: 014501 (2012) [arXiv:1204.6256 (hep-lat)]
    [14] A. Alexandru, M. Lujan, C. Pelissier, B. Gamari and F. X. Lee, arXiv:1106.4964 (hep-lat)
    [15] C. McNeile and C. Michael (UKQCD Collaboration), Phys. Lett. B, 556: 177(2003) [arXiv:hep-lat/0212020]
    [16] P. C. Bruns and U.-G. Meissner, Eur. Phys. J. C, 40: 97 (2005)
    [17] C. W. Bernard et al, Phys. Rev. D, 64: 054506 (2001) [arXiv: hep-lat/0104002]
    [18] D. B. Leinweber, A. W. Thomas, K. Tsushima, and S. V. Wright, Phys. Rev. D, 64: 094502 (2001) [arXiv: heplat/0104013]
    [19] C. R. Allton, W. Armour, D. B. Leinweber, A. W. Thomas, and R. D. Young, Phys. Lett. B, 628: 125 (2005) [arXiv: heplat/0504022]
    [20] W. Armour, C. R. Allton, D. B. Leinweber, A. W. Thomas, and R. D. Young, J. Phys. G, 32: 971 (2006) [arXiv: heplat/0510078]
    [21] R. Lewis and R. M. Woloshyn, Phys. Rev. D, 56: 1571 (1997) [arXiv: hep-lat/9610027]
    [22] A. Ali Khan et al (CP-PACS Collaboration), Phys. Rev. D, 65: 054505 (2002) [arXiv: hep-lat/0105015]
    [23] M. Gockeler, R. Horsley, D. Pleiter, P.E.L. Rakow, G. Schierholz, W. Schroers, H. Stben, and J.M. Zanotti, Proc. Sci. LAT, 2005: 063 (2006) [arXiv: hep-lat/0509196]
    [24] K. Hashimoto and T. Izubuchi, Prog. Theor. Phys., 119: 599 (2008) [arXiv:0803.0186 (hep-lat)]
    [25] K. Jansen, C. McNeile, C. Michael, and C. Urbach (ETM Collaboration), Phys. Rev. D, 80: 054510 (2009) [arXiv:0906.4720 (hep-lat)]
    [26] K. F. Liu, J. Liang, and Y. B. Yang, Phys. Rev. D, 97: 034507 (2018) [arXiv:1705.06358 (hep-lat)]
    [27] Z. Liu, Y. Chen, S.-J. Dong, M. Glatzmaier, M. Gong, A. Li, K.-F. Liu, Y.-B. Yang, and J.-B. Zhang (QCD Collaboration), Phys. Rev. D, 90: 034505 (2014) [arXiv:1312.7628 (hep-lat)]
    [28] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40:100001 (2016)
    [29] F. Jegerlehner and R. Szafron, Eur. Phys. J. C, 71: 1632 (2011) [arXiv:1101.2872 (hep-ph)]
  • 加载中

Get Citation
Wei Sun, Andrei Alexandru, Ying Chen, Terrence Draper, Zhaofeng Liu and Yi-Bo Yang. Anatomy of the ρ resonance from lattice QCD at the physical poin[J]. Chinese Physics C, 2018, 42(6): 063102. doi: 10.1088/1674-1137/42/6/063102
Wei Sun, Andrei Alexandru, Ying Chen, Terrence Draper, Zhaofeng Liu and Yi-Bo Yang. Anatomy of the ρ resonance from lattice QCD at the physical poin[J]. Chinese Physics C, 2018, 42(6): 063102.  doi: 10.1088/1674-1137/42/6/063102 shu
Milestone
Received: 2018-03-08
Fund

    Supported in part by the U.S. DOE Grant No. DE-SC0013065, the National Nature Science Foundation of China (NSFC) (11335001, 11575196, 11575197, 11621131001) (CRC110 by DFG and NSFC), A. A. is supported in part by the National Science Foundation CAREER (PHY-1151648) and by U.S. DOE (DE-FG02-95ER40907), Y. C. thanks the CAS Center for Excellence in Particle Physics (CCEPP) for their support, this research used the resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the O-ce of Science of the U.S. Department of Energy (DE-AC05-00OR22725)

Article Metric

Article Views(1634)
PDF Downloads(22)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Anatomy of the ρ resonance from lattice QCD at the physical poin

  • 1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2. School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3.  Department of Physics, George Washington University, Washington, DC 20052, USA
  • 4.  Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
Fund Project:  Supported in part by the U.S. DOE Grant No. DE-SC0013065, the National Nature Science Foundation of China (NSFC) (11335001, 11575196, 11575197, 11621131001) (CRC110 by DFG and NSFC), A. A. is supported in part by the National Science Foundation CAREER (PHY-1151648) and by U.S. DOE (DE-FG02-95ER40907), Y. C. thanks the CAS Center for Excellence in Particle Physics (CCEPP) for their support, this research used the resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the O-ce of Science of the U.S. Department of Energy (DE-AC05-00OR22725)

Abstract: We propose a strategy to access the qq component of the ρ resonance in lattice QCD. Through a mixed action formalism (overlap valence on domain wall sea), the energy of the qq component is derived at difierent valence quark masses, and shows a linear dependence on mπ2. The slope is determined to be c1=0.505(3)GeV-1, from which the valence πρ sigma term is extracted to be σπρ(val)=9.82(6) MeV using the Feynman-Hellman theorem. At the physical pion mass, the mass of the qq component is interpolated to be mρ=775.9±6.0±1.8 MeV, which is close to the ρ resonance mass. We also obtain the leptonic decay constant of the qq component to be fρ-=208.5±5.5±0.9 MeV, which can be compared with the experimental value fρexp≈221 MeV through the relation fρexp=√Zρfρ±, with Zρ≈1.13 being the on-shell wavefunction renormalization of ρ owing to the ρ-π interaction. We emphasize that mρ and fρ of the qq component, which are obtained for the flrst time from QCD, can be taken as the input parameters of ρ in efiective fleld theory studies where ρ acts as a fundamental degree of freedom.

    HTML

Reference (29)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return