×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

HTL resummation in the light cone gauge

  • The light cone gauge with light cone variables is often used in pQCD calculations in relativistic heavy-ion collision physics. The Hard Thermal Loops (HTL) resummation is an indispensable technique for hot QCD calculation. It was developed in covariant gauges with conventional Minkowski varaiables; we shall extend this method to the light cone gauge. In the real time formalism, using the Mandelstam-Leibbrant prescription of (n· K)-1, we calculate the transverse and longitudinal components of the gluon HTL self energy, and prove that there are no infrared divergences. With this HTL self energy, we derive the HTL resummed gluon propagator in the light cone gauge. We also calculate the quark HTL self energy and the resummed quark propagator in the light cone gauge and find it is gauge independent. As application examples, we analytically calculate the damping rates of hard quarks and gluons with the HTL resummed gluon propagator in the light cone gauge and showed that they are gauge independent. The final physical results are identical to those computed in covariant gauge, as they should be.
      PCAS:
  • 加载中
  • [1] E. Braaten and R. D. Pisarski, Nucl.Phys. B, 337:569 (1990)
    [2] G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys. B, 175:27-92 (1980)
    [3] W. Furmanski and R. Petronzio, Phys. Lett. B, 97:437-442 (1980)
    [4] E.G. Floratos,R. Lacaze, and C. Kounnas, Phys. Lett. B, 98:89-95 (1981)
    [5] J. Kalinowski, K. Konishi, and T. R. Taylor, Nucl. Phys. B, 181:221-252 (1981)
    [6] George Leibbrandt, Phys. Rev. D, 29:1699 (1984); George Leibbrandt, Rev. Mod. Phys., 59:106 (1987)
    [7] A. Bassetto, G. Nardelli, and R. Soldati, Yang-Mills Theory in algebraic non-covariant gauge (Singapore:World Scientific, 1991)
    [8] John C. Collins, Davison E. Soper, and George F. Sterman, Perturbative Quantum Chromodynamics (Singapore:World Scientific, 1989)
    [9] D. J. Pritchard and W. James Stirling, Nucl. Phys. B, 165:237-268 (1980)
    [10] Yuri L. Dokshitzer, Dmitri Diakonov, and S. I. Troian, Phys. Rept., 58:269-395 (1980)
    [11] John C. Collins and Jian-wei Qiu, Phys. Rev. D, 39:1398 (1989)
    [12] Jian-Wei Qiu, Phys. Rev. D, 42:30-44 (1990)
    [13] Jian-wei Qiu and George F. Sterman, Nucl. Phys. B, 353:105-136 (1991)
    [14] Jian-wei Qiu and George F. Sterman, Nucl. Phys. B,353:137-164 (1991)
    [15] Enke Wang and Xin-Nian Wang, Phys. Rev. C,64:034901 (2001)
    [16] Enke Wang and Xin-Nian Wang, Phys. Rev. Lett., 87:142301 (2001)
    [17] Enke Wang and Xin-Nian Wang, Phys. Rev. Lett., 89:162301 (2002)
    [18] Xin-nian Wang, Phys. Rev. Lett., 68:1480-1483 (1992)
    [19] Xin-Nian Wang and Miklos Gyulassy, Phys. Rev. Lett., 68:1480-1483 (1992)
    [20] Xin-nian Wang, Phys. Rept., 280:287-371 (1997)
    [21] Xin-nian Wang, Phys. Rev. C, 58:2321 (1998)
    [22] Xin-nian Wang, Phys. Lett. B, 650:213-218 (2007)
    [23] Jorge Casalderrey-Solana and Xin-Nian Wang, Phys. Rev. C, 77:024902 (2008)
    [24] Guang-You Qin and Abhijit Majumder, Phys. Rev. Lett., 105:262301 (2010)
    [25] Guang-You Qin, Jorg Ruppert, Charles Gale, Sangyong Jeon, Guy D. Moore, and Munshi G. Mustafa, Phys. Rev. Lett., 100:072301 (2008)
    [26] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C, 63:189-285 (2009)
    [27] John C. Collins, Davison E. Soper, and George F. Sterman, Adv. Ser. Direct. High Energy Phys., 5:1-91 (1989)
    [28] A. Metz and A. Vossen, arXiv:1607.02521v2
    [29] David d' Enterria and Peter Z.Skands, arXiv:1702.0139v1
    [30] Xin-Nian Wang and Xiao-feng Guo, Nucl. Phys. A, 696:788-832 (2001)
    [31] Jonathan A. Osborne, Enke Wang, and Xin-Nian Wang, Phys. Rev. D, 67:094022 (2003)
    [32] M. Le Bellac, Thermal field theory (Cambridge, 1996)
    [33] H. A. Weldon, Phys. Rev. D, 26:1394 (1982)
    [34] Jens O. Andersen, Michael Strickland and Nan Su, JHEP, 1008:113 (2010)
    [35] Markus H. Thoma, arXiv:0010164v1
    [36] K.Chou, Z. Su, B. Hao, and L. Yu, Phys. Rep., 118:1 (1985)
    [37] L.V. Keldysh, JETP, 20:1018 (1965)
    [38] Margaret E. Carrington, Hou Defu, and Markus H. Thoma, Eur. Phys. J. C, 7:347-354 (1999)
    [39] N. P. Landsmann and C. G. Van weert, Phys. Rep, 145:141 (1987)
    [40] H. A. Weldon, Phys. Rev. D, 26:2789 (1982)
    [41] Robert D. Pisarski, Phys. Rev. Lett.63:(1989) 1129.
    [42] J.I.Kapusta, Finite-Temperature Field Theory (Cambridge University Press, Cambridge, 1989)
  • 加载中

Get Citation
Qi Chen and De-fu Hou. HTL resummation in the light cone gauge[J]. Chinese Physics C, 2018, 42(4): 043102. doi: 10.1088/1674-1137/42/4/043102
Qi Chen and De-fu Hou. HTL resummation in the light cone gauge[J]. Chinese Physics C, 2018, 42(4): 043102.  doi: 10.1088/1674-1137/42/4/043102 shu
Milestone
Received: 2017-12-04
Fund

    Supported by National Natural Science Foundation of China (11375070, 11735007, 11521064)

Article Metric

Article Views(1653)
PDF Downloads(18)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

HTL resummation in the light cone gauge

    Corresponding author: Qi Chen,
    Corresponding author: De-fu Hou,
  • 1. Key Laboratory of Quark and Lepton Physics(MOE), Institue of Particle Physics Central China Normal University, Wuhan 430079, China
Fund Project:  Supported by National Natural Science Foundation of China (11375070, 11735007, 11521064)

Abstract: The light cone gauge with light cone variables is often used in pQCD calculations in relativistic heavy-ion collision physics. The Hard Thermal Loops (HTL) resummation is an indispensable technique for hot QCD calculation. It was developed in covariant gauges with conventional Minkowski varaiables; we shall extend this method to the light cone gauge. In the real time formalism, using the Mandelstam-Leibbrant prescription of (n· K)-1, we calculate the transverse and longitudinal components of the gluon HTL self energy, and prove that there are no infrared divergences. With this HTL self energy, we derive the HTL resummed gluon propagator in the light cone gauge. We also calculate the quark HTL self energy and the resummed quark propagator in the light cone gauge and find it is gauge independent. As application examples, we analytically calculate the damping rates of hard quarks and gluons with the HTL resummed gluon propagator in the light cone gauge and showed that they are gauge independent. The final physical results are identical to those computed in covariant gauge, as they should be.

    HTML

Reference (42)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return